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When do we say a set S ⊂ Rn is small?
Different approaches:

Set theory (cardinality),

Measure theory (measure),

Topology (meagre),

Category theory (small set),

Dimension theory (dimension).
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The Cantor set:

C = {x ∈ [0, 1] such that there are no 1 on its

ternary expansion}

The Cantor set... kind of.
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How small is the Cantor set?

It is uncountable,

It has zero measure,

It is Meagre,

dimension = ... ?
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Sensible definition of dimension: we would
like it to have some reasonable properties

Manifolds have the dimension we expect they
to have,

Finite and countable sets should have
dimension zero,

Open sets of Rn have dimension n,

If E ⊂ F, then dimE ≤ dimF.

If {Ei} is a countable collection of sets,
then

dim
(∪

i

Ei

)
= sup

i
dimEi.
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There are different notions of dimension,

Algebraic (Krull dimension): very
restrictive (varieties) and only takes
integer values.

Topological: easy to define, not
restrictive, but only takes integer values.
Can be very hard to compute.

Vector space dimension: very restrictive,
only takes integer values. Very easy to
compute.

Hausdorff dimension: not restrictive at
all. Takes a continuum of values. Hard to
define, even harder to compute.
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Hausdorff measures: for s ≥ 0 and A ⊂ Rn,

Hs(A) = lim
δ→0

inf{
∞∑

i=1
(diam Ui)s : A ⊆

∞∪
i=1

Ui, diam Ui < δ},

which means...
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Properties of the Hausdorff measures:

1 Hs(·) are outer measures, so they can
measure everything.

2 They scale nicely: Hs(λ ·A) = λsHs(A).
3 If E ⊂ F, then Hs(E) ≤ Hs(F ).
4 Hs(·) is invariant under isometries.

5 For integer values of s, Hs corresponds to
the s−dimensional Lebesgue measure (up to
normalization).

6 If Hs(A) < ∞ then Ht(A) = 0 for t > s and
Hr(A) = ∞ for r < s.
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The number s from the last property is the
right parameter to measure the set A with. We
define then

dimH(A) = inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) = ∞}.
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So what is the Hausdorff dimension of the
Cantor set?
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Other examples: Let x ∈ [0, 1], and denote by
an(x) the n−th digit of its binary expansion.
The frequency of apparition of the digits 0
and 1 in the binary expansion of x is

f0(x) = lim
n→∞

1
n

#{i ∈ {1, . . . , n : ai(x) = 0}},

f1(x) = lim
n→∞

1
n

#{i ∈ {1, . . . , n : ai(x) = 1}}.
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The Birkhoff’s ergodic theorems tells us
(among many things) that

Leb{x ∈ [0, 1] : f0(x) = f1(x) = 1/2} = 1.

So the set of points having odd frequencies of
digits are small. How small?
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Theorem (Besicovitch).
The Hausdorff dimension of the sets
Jα = {x ∈ [0, 1] : f0(x) = α, f1(x) = 1 − α} is given by

dimH Jα = −1
log 2

(α logα+ (1 − α) log(1 − α)).
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The plot of the function α 7→ dimH Jα:

Looks nice...
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Another example:

Theorem (Kintchin).

Let ψ : N → R+ be a non-increasing function.
Then the set{

x ∈ [0, 1] :
∣∣∣x− p

q

∣∣∣ < ψ(q)
|q|

for i.m.
p

q
∈ Q

}
has Lebesgue measure 1 if

∑
q ψ(q) = ∞ and

Lebesgue measure 0 if
∑

q ψ(q) < ∞.
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An immediate consequence of Kintchine’s
theorem is that the sets

Ec =
{
x ∈ [0, 1] :

∣∣∣x− p

q

∣∣∣ < 1
|q|1+c

for i.m.
p

q
∈ Q

}
have zero Lebesgue measure for c > 1, so Ec is
indeed a small set from the point of view of
Lebesgue measure. How small is Ec?
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Jarnik’s theorem gives us the answer:

Theorem (Jarnik).
The Hausdorff dimension of the sets Ec is
given by dimH Ec = 1/c for c > 1.

In particular, the Lioville numbers have zero
dimension (despite being uncountable!).
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The plot of the function c 7→ dimH Ec:

Also looks nice... Coincidence? I think
not... △.
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Here is when dynamics come into play:
iterated function systems (IFS).
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Dynamical systems and ergodic theory are
to fractal geometry what linear algebra
is to plane geometry.

-Someone that I do not remember.
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The ingredients of an IFS:

1 A closed bounded interval I ⊂ R and I1, . . . , Im

pairwise disjoint closed subintervals of I.

2 A set {fi : I → Ii}m
i=1 of strict (sufficiently

smooth) contractions.

With this, we have a fractal!

Λ =
m∪

i=1
f(Λ).

Explicitly, if Ω = {1, . . . ,m}N, then

Λ = {x = lim
k→∞

(fik
◦ . . . ◦ fi1)(x0), {in} ∈ Ω}

where x0 is any point of I.
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What is the Hausdorff dimension of Λ?
Consider the operator Ts : C(I) → C(I) given by

(Ts)(h)(x) =
m∑

j=1
h(fj(x)) log |f ′

j(fj(x))|s.

Under certain reasonable hypothesis on the
IFS, this operator has spectral gap.
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Theorem (Bowen, Ruelle).
Let λs be the maximal eigenvalue of Ts. Then
the Hausdorff dimension of Λ is the unique
solution s0 to the equation

log λs0 = 0

This allows us to use perturbative methods to
get information about the function coding
dimH Λ.
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The perturbation theory of operators asserts
that if we have an operator T (0) acting with
spectral gap (with maximal eigenvalue λ0) on a
reasonably good Banach space, then any
sufficiently small analytic perturbation T (t)

also has spectral gap (with maximal eigenvalue
λt) and moreover, the function

t 7→ λt

is analytic.
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So Hausdorff dimension may vary analytically!
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(Yet) another consequence of the Birkhoff’s
ergodic theorem:

Theorem.

For almost every x ∈ [0, 1], there is a sequence
of rational numbers {pn/qn} such that

λ(x) := − lim
n→∞

1
n

log
∣∣∣x− pn

qn

∣∣∣ = π2

6 log 2
,

i.e., |x− pn

qn
| ≍ exp(−nλ(x)). Here {pn/qn} is the

best rational approximation of its class of
complexity.

F. Pérez (UoB) PPS 12th May 2018 26 / 33



(Yet) another consequence of the Birkhoff’s
ergodic theorem:

Theorem.

For almost every x ∈ [0, 1], there is a sequence
of rational numbers {pn/qn} such that

λ(x) := − lim
n→∞

1
n

log
∣∣∣x− pn

qn

∣∣∣ = π2

6 log 2
,

i.e., |x− pn

qn
| ≍ exp(−nλ(x)). Here {pn/qn} is the

best rational approximation of its class of
complexity.

F. Pérez (UoB) PPS 12th May 2018 26 / 33



What is the size of the sets having a
different speed of approximation?

Theorem (Policott & Weiss, Kessebomer &
Stratman).
Let

J(β) = {x : λ(x) = β},

then the function t̃ : β 7→ dimH J(β) has domain(
2 log

(
1 +

√
5

2

)
,∞
)
, it is real analytic and

attains its unique maximum at x = π2

6 log 2. For
every such β, the set J(β) has positive
dimension and it is dense.
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The function t̃ coding the dimension of the sets
J(β) was described in more details by Fan,
Liao, Wang and Wu:

F. Pérez (UoB) PPS 12th May 2018 28 / 33



This shows a very intricate decomposition of
the set [0, 1], know as multifractal
decomposition.
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The real question now is...
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What is the dimension of

Romanesco Broccoli
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According to this paper,

dim(Green broccoli) ≈ 2.7
dim(White cauliflower) ≈ 2.8
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Thanks


