Infinite entropy and zero dimensional measures

Felipe Pérez

School of Mathematics, University of Bristol fp16987@bristol.ac.uk

Setting: infinite entropy

Classical result: for a *nice* map *T* of the unit interval *I*:

 $\dim_{H} \mu = \frac{h(\mu)}{\lambda(\mu)},$

where $h(\mu)$ and $\lambda(\mu)$ represent the entropy and the Lyapunov exponent of μ , when they are both finite.

Question: what happens when $h(\mu) = \lambda(\mu) = \infty$?

Our model: Gauss-like maps and Bernoulli measures (see figure, left). This **includes** the Gauss map.

Figure: (left) a Gauss-like system; (right) the coding process for a generic point. In each step, we rescale I_n and see where does x lie.

We make use of the Markov partition structure of the system

 $I(k_1, \ldots, k_n) = I_{k_1} \cap T^{-1}(I_{k_2}) \cap \ldots \cap T^{-(n-1)}(I_{k_n}).$ Set $r_k = |I(k)|$ and $p_k = \mu(I(k))$.

Assumptions:

1. Bounded distortion $+\varepsilon$,

2. Polynomial decay of |I(k)| given by $1/\alpha = s_{\infty} :=$ $\inf\{t \ge 0 : \sum_{n>1}^{\infty} r_n^t < \infty\}$

3. The limit

 $s := \lim_{n \to \infty} \frac{\log p_n}{\log r_n}.$

exists.

For our model, the entropy and Lyapunov exponent are

$$h(\mu) = -\sum_{n=1}^{\infty} p_n \log p_n , \ \lambda(\mu) = -\sum_{n=1}^{\infty} p_n \log r_n.$$

We assume $h = \lambda = \infty$.

Markov dimensional exactness

Markov dimension:

 $\delta(x) := \lim_{n \to \infty} \frac{\log \mu(I_n(x))}{\log |I_n(x)|}$

We compute this for our measures: **Theorem 1.** The Markov dimension of μ exists and it is equal to $\delta(x) = s$, at μ almost every point.

Local dimension: not exact

The lower/upper local dimensions are given by:

$$\underline{d}(x) = \liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} , \ \overline{d}(x) =$$

These two limits are equal under very mild conditions in the finite Lyapunov exponent case. For infinite entropy systems, this is not the case: **Theorem 2.** The lower dimension satisfies $\underline{d}(x) \leq \hat{s} \mu$ almost everywhere. For Gauss-like systems, $\hat{s} = 0$, and hence $\dim_H \mu = 0.$

lim sup – $r \rightarrow 0$

equalities:

This implies that $0 = \dim_H \mu < 1/\alpha = \dim_P \mu$.

Some words about the proof

- are not integrable,

- tion between p_n and r_n .

Extensions and questions

Extensions: These results can be extended to a certain class of Gibbs measures, but such class is harder to characterize, as more sophisticated tools are required. **Questions:**

- 1?
- dence properties are assumed?
- via the suspension flow).

Theorem 3. For μ almost every x, we have the following in-

 $1/\alpha = s_{\infty} \le s = \overline{d}(x).$

• $h(\mu) = \lambda(\mu) = \infty$ implies that $-\log p_{k_1(x)}$ and $-\log r_{k_1(x)}$

• This makes Birkhoff's averages be very *wild*,

• Some ideas of infinite ergodic theory are needed,

• Appropriate covers to detect the asymptotic interac-

1. Is there a measure for which $0 < \dim_{H} \mu$? or $\dim_{H} \mu =$

2. What happens in the general case, where no indepen-

3. Is there an ergodic approach to the general case? (e.g.,