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ABSTRACT

In this thesis we approach three different problems concerning statistical properties of
dynamical systems. In the first problem we study the dimension theoretical properties of
infinite entropy ergodic invariant measures for a certain family of one dimensional maps
in the unit interval. The main difficulty in our setting is that the infinite entropy condition
makes several of the standard tools in ergodic theory unavailable. We bypass this
difficulty by using more refined covering that allow us to see the asymptotic interaction
between the measure we are interested in and the Lebesgue measure. Our main result
provides an almost sure value for the lower and upper local dimensions of the measure.
In the second problem, we study the limit laws of non-stationary dynamical systems com-
prised of intermittent (non-uniformly hyperbolic) maps in the unit interval. In particular,
give large deviations probabilities bounds for sequential and random systems, as well as
establish a central limit theorems and determine the role that random centering plays on
them. The techniques we use differ from the usual spectral methods used for uniformly
hyperbolic systems, and are based on concentration inequalities and new results in the
area.
In the final problem, we study statistical properties of self-affine systems. In particular,
we are interested in the asymptotic properties of equilibrium measures for the system:
we prove that such measures are not mixing, and we prove the existence of zero-one laws
for shrinking target problems.
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1
INTRODUCTION

The theory of dynamical systems has a long history and has developed in many different

forms. The common philosophy is to consider abstract models of systems which evolve in
time according to certain laws. Throughout its history, this theory has found applications

and motivations from diverse fields, including modeling of traffic, weather, kinematics,

biological systems, among others. While the theory started with systems evolving in

continuous time, nowadays it also deals with systems evolving in discrete time steps.

One of the main and historically first objects of study in dynamical systems are deter-
ministic systems. In this context laws of evolution of the system are known and given

the state of the system at time n, we can determine the state of the system at time n+1.

Deterministic systems have the advantage that, given an initial condition, we know the

state at any time. However, there are still many challenges. For example: if we have

limited precision for our measurement of the current state of the system, then as we

iterate the evolution law of our system, this error may grow in time, thus our predictions

of the future states of the system will have a much larger uncertainty than we would

wish. This phenomenon is known as sensitivity to initial conditions and is one of the

defining characteristics of chaotic systems. It is particularly prevalent in systems with

some degree of hyperbolicity, a property which for us will mean that the evolution law is

such that it pushes away points in a certain direction, and brings together points in a

different direction. Some of the mathematical tools used in order to build a theoretical

framework for this theory include measure and probability theory, functional analysis,

complex analysis, geometric measure theory, among others.
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CHAPTER 1. INTRODUCTION

The theory also considers random dynamical systems, in which the laws of evolution

change over time according to random laws, or are known up to a certain degree of

uncertainty. In this case, we cannot predict the state of the system once we let it evolve,

but we can only make statistical predictions about it. The results in this context can be

classified in three different categories:

1. Sequential: here the results are proved for all realizations of the random laws of

evolution,

2. Annealed: here the results are proved for the average realization of the random

laws of evolution,

3. Quenched: here the results are proved for almost all the realizations of the random

laws of evolution.

Note that in the last two categories, a notion of a probability distribution of the evolution

laws is needed. This problem is addressed by introducing the notion of noise space, which

drives the evolution of the system. The idea is to consider all the different possible

evolution laws as outcomes of a random selection process.

Writing a comprehensive history of the area is far beyond the scope of this thesis, so we

mention three key milestones in the theory which are fundamental for the investigations

developed in this thesis.

1. In [Poi90], Poincare formulated what today is known as the Poincare’s recurrence

theorem (see theorem 2.1.12), which states that under certain conditions, most

trajectories of our system visit infinitely often all subsets of the underlaying space

of the system which have positive measure.

2. In [Bir31], Birkhoff gives a quantitative version of Poincare’s result: his Ergodic

theorem shows that the frequency at which trajectories return to a given set is

proportional to the measure of such set.

3. Inspired by the work of Shannon, [Sha48], Kolmogorov and Sinai introduced (see

[Kol58], [Kol59] and [Sin59]) the concept of Entropy in the context of dynamical

systems. This notion tries to capture the idea of growth of complexity of the systems

as they evolve in time, and represents an invariant which enables us to distinguish

systems which are not equivalent.

Despite the nuances in the different approaches to dynamical systems, there are three

objects at the heart of the theory: phase space, composition of transformations and orbits
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of points in the phase space. The phase space represents a set which we will let evolve in

time. The evolution of the phase space is represented by the successive composition of a

family of endomorphisms of the phase space. The orbits represent, for each point of the

phase space, the set consisting of all the images of such point under the compositions

of the family of endomorphisms. One of the central problems in dynamical systems is

understanding the behavior of orbits for a given family of endomorphisms.

When studying the behavior of orbits, there are two main paradigms to choose such

orbits (paradigms which are not mutually exclusive): the topological one, in which we

are interested in generic points in the sense of all points belonging to an open dense

set exhibiting similar orbit behavior, and the measure theoretic one, in which we are

interested in generic points in the sense of all points belonging to a set of total measure

exhibiting similar orbit behavior. In our investigation, we focus on the second point of

view. How we choose to measure the phase space is a non-trivial issue, which will be

addressed when pertained.

The dynamical systems considered can be of a physical nature, where the phase space

represents the set of configuration of a mechanical system, the transformations are the

laws of evolution of such set of configurations, and the orbits are the physical trajectories

of the objects. Examples can also arise in a mathematical setting. For instance, it is

common to let the phase space represent a set of numbers and the endomorphisms of the

space a set of transformation of such numbers.

In this thesis, we will focus on situations arising from considering mathematical objects.

In particular, our results pertain to three different settings:

1. Iterations of uniformly expanding maps of the unit interval,

2. Composition of sequences, taken either deterministically or at random, of non-

uniformly expanding maps of the unit interval,

3. Composition of sequences of contractions on the real plane.

In each of the settings we investigate different problems, however in each case we study

the properties of the measures with which we look at our phase spaces with: statistical

properties, geometric properties and combinations of both.

In the first problem, we study maps belonging to a family that generalizes the Gauss map.

We are interested in understanding some geometric properties of probability measures

which are invariant and ergodic with respect to such maps, and posses some asymptotic

independence properties (Gibbs/Bernoulli measures) as well as infinite entropy with

3



CHAPTER 1. INTRODUCTION

respect to the map. The kind of properties we are interested in are related to fractal

geometry: we would like to understand the concentration of mass at local scale around a

typical point with respect to the measure (the local dimension of the measure). In the

context of finite entropy, the local dimension can be calculated almost everywhere in

terms of the entropy and the average exponent of the derivative of the map (Lyapunov

exponent), using standard techniques of fractal geometry: coverings by cylinders and

metric estimates of their diameters, as well as measure estimates of their mass. When

the entropy is infinite, these methods no longer work, as they rely on asymptotic results

such as the Ergodic Theorem and the Shannon-McMillan-Breiman theorem, which are

no longer valid in our context. To tackle this difficulty, we use finer coverings, as well as

some tools of infinite ergodic theory.

In the second problem, we consider both deterministic and random compositions of maps

belonging to a certain family of non-uniformly hyperbolic maps: the Liverani-Saussol-

Vaienti (LSV) maps. The composition can be done according to a fixed sequence of choices

of the maps, or according to a probability distribution defined in a finite collection of maps

from this family. The elements of the LSV family are endomorphisms of [0,1] having

derivative strictly bigger than one in all points but x = 0, where the maps and all of

their compositions have derivative equal to one. We are interested in studying statistical

laws of the considered compositions from the point of view of the Lebesgue measure,

laws such as central limit theorems and large deviations. The methods that have been

historically used to derive these results in the context of uniformly-hyperbolic dynamics

rely heavily on the quasi-compactness of an operator (the transfer operator) associated

to the dynamics of the system. When the maps are no longer uniformly-hyperbolic, the

transfer operator of the system is not quasi-compact, so the methods no longer work. To

overcome this difficulty, we use a martingale approximation method, in which the sums

which are being studied can be written as the sum of a martingale difference and an

error term which can be controlled. Therefore, by keeping track of the induced error, we

can use probabilistic techniques from the theory of martingales in the dynamical setting.

In the third problem, we investigate statistical laws associated to systems consisting of

iterations of different affine contractions of the two-dimensional Euclidean space. These

systems give rise to fractal sets called self-affine sets. The problem of determining the

Hausdorff dimension of such sets has been historically difficult, and the tools and results

developed by Falconer and Käenmäki have substantially pushed forward the subject.

In particular, the construction of Käenmäki measures on the self-affine sets makes it

possible to find the dimension of such sets through equilibrium measures. We investigate
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1.1. STRUCTURE OF THE THESIS

the mixing and zero-one laws for such measures, using recent results by Fraser, Jordan

& Jurga.

1.1 Structure of the thesis

The organization of the thesis, as well as the main results of each section is the following:

Chapter 2: Preliminaries. In this chapter we present the basic terminology and results

needed to establish the results of the subsequent chapters. We introduce standard tools

from ergodic theory that will be used throughout the thesis. We also introduce the

relevant notions of dimension theory, which will be fundamental for chapter 3. Finally,

we also introduce the language of iterated function systems and random and sequential

dynamical systems, which will be the objects of study of chapters 5 and 4 respectively.

Chapter 3: Dimension of measures with infinite entropy. In this chapter, we consider a

class of maps of the unit interval [0,1], and for each of them, a class of invariant, ergodic

probability measures (see section 2.1 for the corresponding definitions). The class of

maps is characterized by having coding by a countable alphabet, a symbolic shift and

metric properties which are similar to the ones of the Gauss map, and the measures are

defined in terms of their asymptotic behavior (Gibbs measures), as well as the fact that

they have infinite entropy with respect to the map. Our main result consists of finding

the lower and upper local dimensions of the measure, yielding in particular the values

of the Hausdorff and the packing dimensions of the measure. These results have been

accepted for publication by Nonlinearity, and can also be found in the pre-print [PP18].

After that, we construct an ergodic invariant probability measure which has infinite

entropy with respect to an EMR and positive Hausdorff dimension.

Chapter 4: Limit laws for sequential and random dynamical systems. In this chapter

we consider deterministic and random compositions of maps belonging to a class of

non-uniformly hyperbolic maps of the unit interval (Liverani-Saussol-Vaienti maps). For

this class of maps, there is no common invariant probability measure, hence it is natural

to consider the Lebesgue measure as a reference measure. The main results of this

chapter are a large deviations bounds for sequential and random systems, as well as an

upgrade to a central limit theorem proved previously by Nicol, Török, and Vaienti, and

Hella and Leppänen. The results of this chapter are joint work with Matthew Nicol and

Andrew Török from the University of Houston, and have been accepted for publication

in Ergodic Theory and Dynamical Systems. The pre-print version of the article can be

found in [NPPT19].
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CHAPTER 1. INTRODUCTION

Chapter 5: Statistical properties of Käenmäki measures. In this chapter we present the

first results of an ongoing project at the time of writing of this thesis. We investigate

some statistical properties of Käenmäki measures associated to two dimensional iter-

ated function systems consisting of affine transformations whose linear parts can be

represented using diagonal or anti-diagonal matrices. Our main results show that such

measures are not mixing, and that they satisfy a zero-one law in the context of shrinking

targets.

All logarithms considered in this thesis are in base e.

6



C
H

A
P

T
E

R

2
PRELIMINARIES

2.1 Measure preserving transformations

The main objects of study of this thesis are dynamical systems and the statistical

properties of measures on the underlying phase space. We provide a general definition,

which will include the systems treated in all chapters of this thesis.

Let (X i,Bi) for i = 1,2 be measurable spaces, that is, X i is a set and Bi a sigma-algebra

on X i. A function T : X1 → X2 is measurable if T−1(B) ∈B1 for all sets B ∈B2. In general

we will take X2 = X1 and B2 =B1, or X2 =R and B2 the Borel sigma-algebra of R. We

will refer to measurable functions f : X →R indistinctly as random variables, observables
or potentials.

Definition 2.1.1. A (deterministic) dynamical system is an action ζ of a semigroup S on
a measurable space (X ,B) such that ζ(s, ·) : X → X is measurable for all s ∈ S. We call X
the phase space.

We think of X evolving according to ζ(s, ·) : X → X for different elements of s. For instance,

if s1, s2 ∈ S, we can think of the succesive evolved states of X given by ζ(s1, ·) : X → X
and then ζ(s1s2, ·) : X → X .

The main examples of deterministic dynamical systems that we will work with are the

following:

Example 2.1.2. Suppose T : X → X is a measurable function, and consider the semigroup
{T i}i≥0, with composition as operation. Then (X , {T i}i≥0) is a dynamical system. If f is

7



CHAPTER 2. PRELIMINARIES

invertible, then we can also consider the action of the group {T i}i∈Z on X , and this also
defines a dynamical system.

Example 2.1.3. Suppose S = {Tλ}λ∈Λ is a family of measurable transformations on X ,
and consider the free semigroup F(S) = {Ti1 ◦ · · · ◦Tin : ik ∈Λ}. The operation of F(S) is
given by composition of the transformations in S. Here we do not include the empty
product as an identity element of F(S).

A dynamical system represents the basic structure that models evolution of measurable

spaces over time. In order to make measurements of the space and its subsequent evolved

states, we need a measure on the phase space. In general, the phase space can have a

very pathological image after the action of dynamics. To avoid this, we will make certain

assumptions which ensure compatibility between the transformations and the measures

on the phase space.

Definition 2.1.4. Let m be a measure on (X ,B), and a measurable transformation
T : X → X . We say that T is non-singular with respect to the measure m if m(T−1(A))= 0

if and only if m(A) = 0 for every measurable set A ∈ B. We say that the dynamics ζ is
non-singular if all the transformations ζ(s, ·) are non-singular.

A more rigid notion than non-singularity occurs when the transformation do not alter

the structure of the phase space as seen by the measure.

Definition 2.1.5. If the transformation T : X → X is such that m(T−1(A)) = m(A) for
all measurable sets A ∈B, we say that f is measure preserving (or that the measure is
T-invariant). We say that the dynamics ζ is measure preserving if all the transformations
ζ(s, ·) are measure preserving.

It is easy to see that a composition of non-singular/measure preserving transformations is

non-singular/measure preserving, thus we can form a category whose objects are measure

spaces and its arrows are non-singular/measure preserving transformations. We will

refer to this category as the category of non-singular/measure preserving transformations.

This means in particular that when we have dynamics given by the action of the free

semigroup generated by a set S, it suffices to check that each of the elements of S is

non-singular/measure preserving to check that the whole action has the same property.

If the sigma-algebra of the phase space is generated by a semi-algebra, then we do not

need to check the equality for all the sigma-algebra but just for the generators:

8



2.1. MEASURE PRESERVING TRANSFORMATIONS

Lemma 2.1.6. Suppose that S is a semi-algebra on X such that σ(S )=B, and suppose
that the measure µ is such that µ(T−1(A))=µ(A) for all A ∈S . Then µ(T−1(B))=µ(B) for
all B ∈B.

Proof. This is theorem 1.1 in [Wal00]. �

The definition of measure preserving transformations can be characterized in terms of

integrals of functions:

Proposition 2.1.7. A transformation T preserves m if and only if∫
X
ϕ◦Tdm =

∫
X
ϕdm

for every ϕ ∈ L1(m).

Proof. This is proposition 1.1.1 [VO16]. �

We list now some of the main examples that we are going to work with throughout this

thesis.

Example 2.1.8. Suppose A is a finite/countable alphabet, and consider the set of infinite
sequences with elements in A , denoted by X := A N. The topology of X is the product
topology of the discrete spaces A , and the sigma-algebra of X is the Borel sigma-algebra
generated by this topology. We define a transformation T on X given by T(ω)n =ωn+1 for
ω= (ω1,ω2, . . .) ∈ X , or equivalently, T(ω)= (ω2,ω3, . . .). We call X a symbolic space with
finitely/countably many symbols, and T the left shift operator on the symbolic space.

The structure of X is best described by the cylinder sets: for every finite sequence
a = (a1, . . . ,ak) ∈ A k, define the cylinder associated to the sequence a as the set C(a) =
[a1, . . . ,ak] = {ω ∈ X : ω1 = a1, . . . ,ωk = ak}. In this case, we say that the length of the
cylinder is k. Note that the collection of all cylinders of length k forms a partition of the
phase space X . The topology of X can also be described as the topology generated by all
cylinders.

Let p = (p1, . . .) ∈ (0,1)|A | be a probability vector. Define a measure µ on X by setting

µ ([a1, . . . ,ak])=
k∏

i=1
pai

for all words a = (a1, . . . ,ak) ∈ A k, for all k ≥ 1. The existence of such measure can be
proved using Kolmogorov’s extension theorem (see theorem 2.1.5 in [Oks13]). We call this

9



CHAPTER 2. PRELIMINARIES

kind of measure a Bernoulli measure. Note that by construction, Bernoulli measures leave
the measure of cylinders invariant under the application of the left shift map. Since the
cylinders generate the sigma-algebra of measurable sets, by lemma 2.1.6 we conclude that
the measure is indeed invariant under T.

Example 2.1.9. Let X = [0,1] and B the Borel sigma-algebra. Define the Gauss map by

T : [0,1]→ [0,1]

x 7→


1
x
−

[
1
x

]
for x ∈ (0,1]

0 for x = 0

The action of T on [0,1] can be visualized as in figure 2.1:

1

0 11
2

1
3

1
4

1
5

Figure 2.1: Plot of the Gauss Map T.

Define the Gauss measure µ on [0,1] by

µ(A)= 1
log2

∫
A

1
1+ x

dx

for any measurable set A. We can see that this measure is invariant under T by noticing
that for all sets of the semi-algebra of intervals of [0,1] one has

T−1((a,b))=
∞⋃

n=1

(
1

n+b
,

1
n+a

)
,

and consequently

µ(T−1(a,b))=
∞∑

n=1
µ

(
1

n+b
,

1
n+a

)
= 1

log2

∞∑
n=1

log

( 1
n+a +1

1
n+b +1

)
= 1

log2
log

(
b+1
a+1

)
=µ((a,b)).
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2.1. MEASURE PRESERVING TRANSFORMATIONS

By lemma 2.1.6, we concludde that the Gauss measure is invariant under the Gauss map.

In chapter 3 we will define a class of maps of the interval which generalizes the Gauss

map, yet they have similar properties to the ones of the Gauss map.

Example 2.1.10. Let X = [0,1] with the Borel sigma-algebra, and for α ∈ (0,1), define the
Liverani-Saussol-Vaienti (see [LSV99]) intermittent map by

Tα(x)=
x+2αx1+α, if 0≤ x ≤ 1/2,

2x−1, if 1/2≤ x ≤ 1.
,

The issue of invariant measures for this class of maps will be addressed in chapter 4.

We describe now the dynamics we study in chapter 5. We do not provide the full details

of the constructions, as this will be provided in the corresponding chapter.

Example 2.1.11. Let X be a closed subset of Rn, and let {S1, . . . ,Sm : X → X }, with m ≥ 2

be a family of contractions:

|Si(x)−Si(y)| ≤ ci|x− y|

for ci ∈ [0,1), which we call contraction ratios of the maps Si. We call the family {Si} an
iterated function system (IFS). A non-empty compact subset F of X is called an attractor

for the IFS if

F =
m⋃

i=1
Si(F).

The dynamics of the IFS on the attractor are given as follows: for a point x ∈ F and an
element ω ∈Ω = {1, . . . ,m}N, we consider the sequence of compositions Sω1 ◦ · · · ◦Sωn(x).
Note that contrary to sequential systems, the order of the composition is reversed. This is
due to the fact that we are applying different contractions to the underlying set, which
correspond to the inverse branches of expanding maps in the sequential case.

The next theorem gives a first recurrence result for dynamical systems with invariant

measures.

Theorem 2.1.12 (Poincare). Suppose that µ is a probability measure and that T is
µ-invariant. Then for any measurable set E with µ(E)> 0, we have that

µ(x ∈ E : Tn(x) ∈ E i.o. )=µ(E).

11



CHAPTER 2. PRELIMINARIES

Proof. This is theorem 1.14 in [Wal00]. �

This result says that for each set of positive measure, almost all of its points return to it

infinitely often. In the next section we formulate a quantitative version of this result,

fundamental in ergodic theory.

2.2 Ergodicity and mixing

We have defined a category in which we can do dynamics, namely, the category of measure

preserving transformations. Within this category, we can find transformations which are

in some sense, the irreducible components of measure preserving transformations.

Definition 2.2.1. We say that a measure preserving transformation T : X → X is ergodic

if T−1A = A for a measurable set A, implies that µ(A)= 0 or µ(X \ A)= 0.

Note that proving that a transformation is not ergodic requires exhibiting a decom-

position of the space X into two subspaces X = X1 ∪ X2 of positive measure such that

T−1X i ⊆ X i.

On the other hand, proving that a transformation is ergodic in general is a hard problem,

and it may require more sophisticated techniques. Ergodicity can be characterized in

terms of the observables of the system

Proposition 2.2.2. The measure µ is ergodic with respect to T if and only if the only if
for all f ∈ L2 such that f ◦T = f almost everywhere, then f is constant.

Proof. This is theorem 1.6 from [Wal00]. �

For the rest of the section we assume that the measures we work with are probability

measures (we can assume they are finite and then normalize to obtain a probability

measure). Despite the notion of ergodicity being about irreducibility of the dynamics, it

has strong consequences on the asymptotic behavior of the dynamics.

We formulate now one of the foundational results on ergodic theory, namely, the Birkhoff

Ergodic Theorem:

Theorem 2.2.3 (Birkhoff). Suppose that the measure µ is T-invariant and that f is an
integrable observable. Then there exists a T-invariant function f̂ ∈ L1 such that

lim
n→∞

1
n

n−1∑
k=0

f ◦Tk(x)= f̂ (x) a.e.,

and
∫

X f dµ= ∫
X f̂ dµ. If µ is ergodic, then f̂ is constant and equal to

∫
X f dµ.

12



2.2. ERGODICITY AND MIXING

Proof. This is theorem 1.4 from [Wal00]. �

In most applications we will consider ergodic systems. If that is the case and we take

f = 1A for a positive measure measurable set A, then the conclusion of the ergodic

theorem is that asymptotically, the ratio of the time spent in A by the orbit of a generic

point is proportional to the measure of A. As this quantitative result only depends on

the measure of A, we can think of it as an equidistribution result. In the words of G.D.

Birkhoff (see [Bir31])

‘ The Ergodic Theorem then says: for any such measure-preserving transfor-

mation T, and for each individual point P (except possibly an exceptional set

of measure 0), there is a definite probability that its iterates under T, from P
on, namely

P,T(P),T2(P), . . . and P,T−1(P),T−2(P), . . .

fall in any given measurable set M.’

Furthermore, then he adds:

‘What the Ergodic Theorem means, roughly speaking, is that for a discrete

measure-preserving transformation or a measure-preserving flow of a finite

volume, probabilities and weighted means tend toward limits when we start

from a definite state P (not belonging to a possible exceptional set of measure

0), and, furthermore, the limiting value is the same in both directions.’

We present now one of the main examples of ergodic dynamics that we will use throughout

this work.

Proposition 2.2.4. Let X = [0,1] be the unit interval and T,µ the Gauss map and the
Gauss measure as defined in example 2.1.9. Then µ is ergodic with respect to T.

Proof. This proof is from [VO16], but we include it as some of its ideas are fundamental

for our investigation. By computing derivatives, it is possible to prove that

|T ′(x)| ≥ 1 , |(T2)′(x)| ≥ 2 , |T ′′(x)/T ′(x)2| ≤ 2

for all x ∈ (0,1]. Let I(k) = ( 1
k+1 , 1

k ) for all k ≥ 1, and denote by gk the local inverse

of T restricted to I(k). For any finite sequence (a1, . . . ,ap) ∈ Np with p ≥ 2, denote

I(a1, . . . ,ap) = {x ∈ [0,1] : Tk−1(x) ∈ I(ak), k = 1, . . . , p}. Then the inverse of T p for the

13
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interval I(a1, . . . ,ap) is given by gap ◦ · · · ◦ ga1 . The previous metric estimates imply that

for for any z ∈ I(k),

|(log |T ′ ◦ gk(z)|)′| =
∣∣∣∣∣T ′′(gk(z))g′

k(z)

T ′(gk(z))

∣∣∣∣∣=
∣∣∣∣ T ′′(gk(z))
T ′(gk(z))2

∣∣∣∣≤ 2.

Then for any two points x, y ∈ I(a1, . . . ,ap), by using the mean value theorem and the

previous estimate, we have

log
|(T p)′(x)|
|(T p)′(y)| =

p∑
j=1

log |T ′ ◦ ga j (T
j(x))|− log |T ′ ◦ ga j (T

j(y))|

≤ 2
p∑

j=1
|T j(x)−T j(y)| = 2

p−1∑
i=0

|T p−i(x)−T p−i(y)|

≤
p∑

j=1
21−[i/2]|T p(x)−T p(y)| ≤ 8.

Take two measurable sets E1,E2 ⊂ I(a1, . . . ,ap), and then by integrating with respect to

the Lebesgue measure m twice, we obtain

m(T p(E1))
m(T p(E2))

=
∫

E1
|(T p)′|dm∫

E2
|(T p)′|dm

≤ e8 m(E1)
m(E2)

.

Now, the density of density of the Gauss measure µ with respect to the Lebesgue measure

is bounded above and below:
1

2log2
≤ 1

(1+ x) log2
≤ 1

log2
,

we obtain the same inequality for the Gauss measure

µ(Tk(E1))
µ(Tk(E2))

=
∫

E1
|(Tk)′|dm∫

E2
|(Tk)′|dm

≤ K
µ(E1)
µ(E2)

(2.1)

for some constant K > 0. Let A ⊂ (0,1) be a T-invariant set of positive Gauss measure (and

hence, positive Lebesgue measure). Then by the Lebesgue’s density theorem (corollary

2.14 in [Mat99]), almost every point of A has density 1, that is, for almost every a ∈ A,

lim
r→0

µ(A∩B(a, r))
µ(B(a, r))

= 1.

Fix such point a, and let {I(a1, . . . ,am)}m≥1 be the sequence of intervals such that

Tk−1(a) ∈ I(ak) for all k ≥ 1. We apply the estimate 2.1 to the sets E1 = Ac ∩ I(a1, . . . ,ak)

and E2 = I(a1, . . . ,ak) and obtain

µ(Ac)= µ(Ac)
µ(0,1)

≤ K
µ(Ac ∩ I(a1, . . . ,ak))
µ(I(a1, . . . ,ak))

→ 0

as k →∞. This proves that µ(A)= 1, and hence µ is ergodic with respect to T. �

14
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The previous proof is important not only because it shows that the Gauss measure is

ergodic, but also because it introduces a series of techniques which are fundamental

throughout this work, namely, using symbolic coding for the dynamics, the bounded

distortion estimates density arguments.

Proposition 2.2.5. Let X be a symbolic space with alphabet A = {1, . . . ,m} and let T be
the left shift on X . If µ is a Bernoulli measure on X , then µ is ergodic with respect to T.

We postpone the proof of this proposition, as it is an easy consequence of a later proposi-

tion.

An important consequence of the ergodic theorem is that it characterizes ergodicity in

terms of asymptotic independence of sets.

Proposition 2.2.6. A measure µ is ergodic with respect to T if and only if

lim
n→∞

1
n

n−1∑
i=0

µ
(
T−i A∩B

)
=µ(A)µ(B)

for all measurable sets A,B.

Proof. This is Corollary 1.14.2 in [Wal00]. �

We will refer to this property as asymptotic independence of the means. In what follows

we will define strongers notions of asymptotic independence, which will be central to our

investigation.

Definition 2.2.7. We say that the measure µ is mixing with respect to T if

lim
n→∞µ(T−n A∩B)=µ(A)µ(B)

for all measurable sets A,B.

This notion is weaker than probabilistic independence but stronger than ergodicity. The

intuition of this definition is the following: we take two subsets of the phase space A,B,

and we let one of them evolve according to the dynamics T. If we wait long enough, its

evolved state T−n A is virtually independent of B. In particular, if we take B = A we

obtain that the system has a memory loss property.

Corollary 2.2.8. Mixing implies ergodicity.

If the sigma-algebra admits a generator, then we only need to check decay for the

elements of the generating algebra:

15
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Proposition 2.2.9. Suppose E is an algebra of sets such that B =σ(E ). Then a measure
µ is mixing with respect to T if and only if

lim
n→∞µ(T−n A∩B)=µ(A)µ(B)

for all sets A,B ∈ E .

Proof. This is Lemma 7.1.2 in [VO16]. �

Mixing can also be characterized in terms of integrals:

Proposition 2.2.10. A measure µ is mixing with respect to T if and only if

lim
n→∞

∫
X

f ◦Tn · gdµ−
∫

X
f dµ

∫
X

gdµ= 0

for all f , g ∈ L2.

Proof. Mixing implies the equality above for indicator functions, and by linearity, it

holds for simple functions. For L1 functions, an approximation argument yields the

result. The opposite direction is obvious. �

The quantity above is of great importance by itself, so we will give it a name:

Definition 2.2.11. Let f , g be functions in L2. We define their correlation function with
respect to the dynamics T and the measure µ by

Cn( f , g)=
∫

X
f ◦Tn · gdµ−

∫
X

f dµ
∫

X
gdµ.

One of the main problems of our investigation is to study the rate at which the correlation

function decays with respect to n for a certain class of functions. For more general

dynamics we will need an adapted notion of decay of correlations or loss of memory which

we will introduce in chapter 4.

We will prove now that the symbolic dynamical system is mixing.

Proposition 2.2.12. Let X be a symbolic space with alphabet A = {1, . . . ,m} and let T be
the left shift on X . If µ is a Bernoulli measure on X , then µ is mixing with respect to T.
Consequently, µ is ergodic.
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Proof. Let A,B be two cylinders in X , that is, there exist two finite sequences a1, . . . ,ak

and b1, . . . ,bp such that A = [a1, . . . ,ak] and B = [b1, . . . ,bp]. Then for any n ≥ 1 we obtain

T−(n+p)A∩B = ⋃
(i1,...,in)∈A n

[b1, . . . ,bp, i1, . . . , in,a1, . . . ,ak].

Since the cylinder sets of the same length are disjoint, it follows that

µ(T−(n+p)A∩B)= ∑
(i1,...,in)∈A n

µ[b1, . . . ,bp, i1, . . . , in,a1, . . . ,ak]

= ∑
(i1,...,in)∈A n

µ[b1, . . . ,bp]µ[i1, . . . , in]µ[a1, . . . ,ak]

=µ[A]µ[B],

proving the first part of the proposition. The ergodicity of µ follows from corollary 2.2.8.

�

We formulate now a related notion of mixing from the topological point of view:

Definition 2.2.13. Let X be a topological space and T : X → X be a continuous transfor-
mation. We say that T is topologically mixing if for any two non-empty open sets U ,V ,
there exists n0 ∈N such that T−nU ∩V 6= ; for all n ≥ n0.

The structure of the set of ergodic measures on a space for a given transformation is

quite complicated. We give one of its properties which will be useful when considering

multiple different ergodic measures for a fixed transformation:

Proposition 2.2.14. Suppose that the sigma-algebra of X can be generated by a count-
able set. Let {µi} be a family of distinct invariant ergodic measures with respect to T. Then
the measures are mutually singular: there exist a family of subsets of X {Pi}, pairwise
disjoint, invariant under T such that µi(Pi)= 1 for all i.

Proof. This is lemma 4.3.3 from [VO16]. �

2.3 Dimension theory

In this section we introduce the dimension theory elements we will study throughout

this work. Recall the diameter of a set U ⊂Rn is given by

|U | = sup{‖x− y‖ : x, y ∈U},

17
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where the norm is the Euclidian norm of Rn. For a cover U of a set X ⊂Rn, its diameter

is given by

diamU = sup{|U | : U ∈U }.

Definition 2.3.1. Given X ⊂Rn and α≥ 0, the α−dimensional Hausdorff measure of X
is given by

m(X ,α)= lim
δ→0

inf
U

∑
U∈U

|U |α,

where the infimum is taken over finite or countable covers U of X with diamU ≤ δ.

It is possible to prove (see section 3.2 of [Fal04]) that there exists a number s ∈ [0,∞]

such that m(X ,α)=∞ for t < s and m(X ,α)= 0 for t > s, since m(X ,α) is decreasing in α

for a fixed set X .

Definition 2.3.2. The unique number

dimH X = inf{α ∈ [0,∞] | m(X ,α)= 0}

is called the Hausdorff dimension of X .

We extend the notion of Hausdorff dimension to finite Borel measures on Rn:

Definition 2.3.3. Let µ be a finite Borel measure on Rn. The Hausdorff dimension of µ is
defined by

dimH µ= inf{dimH(Z) |µ(Rn \ Z)= 0}.

We define now the analogue notion of Packing dimension:

Definition 2.3.4. We say that a collection of balls {Un}n ⊂ Rn is a δ−packing of the set
E ⊂ Rn if the diameter of the balls is less than or equal to δ, they are pairwise disjoint
and their centres belong to E. For α ∈Rn, the α−dimensional pre-packing measure of E is
given by

P(E,α)= lim
δ→0

sup
{∑

n
diam(Un)α

}
where the supremum is taken over all δ−packings of E. The α−dimensional packing

measure of E is defined by

p(E,α)= inf
{∑

i
P(E i,α)

}

18
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where the infimum is taken over all covers {E i} of E. Finally, we define the packing

dimension of E by

dimp(E)= sup{s | p(E,α)=∞}= inf{s | p(E,α)= 0}.

We extend the notion of packing dimension to finite Borel measures on Rn.

Definition 2.3.5. Let µ be a finite Borel measure on Rn. The Packing dimension of µ is
defined by

dimpµ= inf{dimp(Z) |µ(Rn \ Z)= 0}.

Bounding the Hausdorff dimension from above or the Packing dimension from below

usually involves the use of a single suitable cover of the space, while for bounds from

below and above respectively, we have to deal with every cover of the space. There are

several tools to help with this problem, and we will make use of the so called (local) Mass

Distribution Principles. For this, we introduce the notion of local dimension.

Definition 2.3.6. The lower and upper pointwise dimensions/local dimension of the
measure µ at a point x ∈ X are given by

dµ(x)= liminf
r→0

logµ(B(x, r))
log r

, dµ(x)= limsup
r→0

logµ(B(x, r))
log r

.

When both limits coincide, we call the common value the pointwise dimension/local
dimension of µ at x and denote it by dµ(x) and say that µ is exact dimensional if dµ(·)=
dµ(·) µ-almost everywhere.

If dµ(x)= d, then µ(B(x, r))∼ rd for small values of r. We state now the local version of

the Mass Distribution Principle.

Proposition 2.3.7. Let X ⊂Rn and α ∈ (0,∞], then

1. If dµ(x)≥α for µ−almost every x ∈ X , then dimH µ≥α;

2. If dµ(x)≤α for every x ∈ X , then dimH X ≤α,

3. If dµ(x)≥α for µ−almost every x ∈ X , then dimpµ≥α;

4. If dµ(x)≤α for every x ∈ X , then dimp X ≤α,
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5. We have

dimH µ= ess sup{dµ(x) | x ∈ X },

dimpµ= ess sup{dµ(x) | x ∈ X },

Proof. This follows from Proposition 2.3 of [Fal97]. �

In particular, if dµ(·) is constant almost everywhere, then dimH µ is equal to that constant

value. Analogously, if dµ(·) is constant almost everywhere, then dimpµ is equal to that

constant value.

2.4 Entropy, Lyapunov exponent

In this section we introduce the notions of entropy and Lyapunov exponent, which are

central for the investigation of chapter 3. In this section, (X ,B,µ) denotes a probability

space. When it is clear from the context, we will not mention B and µ.

Definition 2.4.1. A partition of X is a finite/countable set P ⊂B such that

µ

( ⋃
P∈P

P

)
= 1

and P ∩Q =; for P,Q ∈P , P 6=Q.

If we have two partitions of X , we can compare them with the following relation:

Definition 2.4.2. Let P ,Q be two partitions of X . We say that Q is finer than P (or P

is coarser than Q) if every set in Q is contained in some set of P , up to a set of measure
zero. In this case we denote P ≺Q.

If x is a point of X and P is a partition of X , we denote by P (x) the element of P

containing x. Note that the function x 7→P (x) is defined µ-almost everywhere.

Definition 2.4.3. If {P i}i∈I is a finite/countable family of partitions, we define their join

by

∨
i∈I

P i :=
{⋂

i∈I
Pi : Pi ∈P i

}
.
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If the collection {P i}i∈I consists of finitely many partitions P1, . . . ,Pn, we denote their join
by P1 ∨ . . .∨Pn.

Proposition 2.4.4. The join of a family of partitions is a partition. It also holds that
P ,Q ≺P ∨Q.

Proof. For all i ∈ I, there exists a set X i ⊂ X of full measure such that
⋃

P∈P i P = X i.

Define X̂ =⋂
i∈I X i, which is a subset of full measure. Then by construction we have that⋃

P∈∨
i∈I P = X̄ . On the other hand, if we take two elements of

∨
i∈I P i,

⋂
i∈I Pi and

⋂
i∈I Q i

with (
⋂

i∈I Pi)∩ (
⋂

i∈I Q i) 6= ;, then taking x ∈ (
⋂

i∈I Pi)∩ (
⋂

i∈I Q i) we have that x ∈ Pi ∩Q i

for all i ∈ I. So Pi = Q i for all i, giving a contradiction. The second assertion follows

immediately from the definition. �

We define now the entropy of a partition:

Definition 2.4.5. For a partition P of X , we define its entropy by

Hµ(P ) :=− ∑
P∈P

µ(P) logµ(P).

Here we follow the convention 0 ·∞= 0.

In general, the function the entropy of a join is less than the sum of the individual

entropies of the partitions being considered:

Lemma 2.4.6. If P ,Q are partitions of X , then we have that

Hµ(P ∨Q)≤ Hµ(P )+Hµ(Q).

Proof. This is the remark after lemma 9.1.5 in [VO16]. �

We introduce now the entropy of a measure preserving transformation. For this, we need

a notion of how to dynamize partitions.

Lemma 2.4.7. If T is a measure preserving transformation and P is a partition of X ,
then T−nP := {T−n(P) : P ∈P } is also a partition of X for all n ≥ 1. In this case, we have
that Hµ(T−nP )= Hµ(P ).

Proof. Note that since T preserves µ, we have that

µ

( ⋃
P∈P

T−1(P)

)
=µ

(
T−1 ⋃

P∈P

P

)
=µ

( ⋃
P∈P

P

)
= 1.
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On the other hand, for P,Q ∈P we have that T−1P∩T−1Q = T−1(P∩Q) so if P 6=Q then

T−1P ∩T−1Q =;, proving that T−1P is a partition of X . Iterating this, the conclusion

follows for T−nP . The second part of the lemma is trivial from the definition of entropy

of a partition. �

Now we can define the dynamical iterates of a partition.

Definition 2.4.8. Let T : X → X be a measure preserving transformation on X , and
suppose P is a partition of X . We define the n-th dynamical iterate of P by

P n :=
n−1∨
i=0

T−nP .

For x ∈ X , the element of P n containing x is denoted by P n(x).

We are interested in the sequence of entropies Hµ(P n) for a given partition P . This

sequence is subadditive:

Lemma 2.4.9. For any n,m ≥ 1 we have Hµ(P n+m)≤ Hµ(P m)+Hµ(P n).

Proof. This follows immediately from the observation that P n+m =P m ∨T−m(P n) and

lemmas 2.4.6 and 2.4.7. �

The previous lemma implies that the sequence of real numbers an = Hµ(P n) is subaddi-

tive, that is, an+m ≤ an +am for all n,m ≥ 1.

Lemma 2.4.10 (Fekete). If an is a subadditive sequence of real numbers, then the limit
limn

an
n exists in [−∞,∞) and is equal to infn

an
n .

Proof. This is lemma 3.3.4 in [VO16]. �

With this lemma we can consider the asymptotic growth rate of the entropies Hµ(P n):

Definition 2.4.11. The entropy of T with respect to P is defined as hµ(T,P )= limn
1
n Hµ(P n).

The entropy of T with respect to µ is defined as hµ(T)= supP hµ(T,P ), where the supre-
mum is taken over all partitions with finite entropy. When there is no risk of confusion,
we will denote the entropy by hµ.

Example 2.4.12. Consider again (X ,T,µ) to be a symbolic space with alphabet A , T
the left-shift and µ a Bernoulli measure with probability vector p = (p1, . . .) ∈ (0,1)A .
There is a natural partition P on X given by P = {C(a) = [a] : a ∈ A }, where the sets
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C(a) are defined as in example 2.1.8. The iterates under T of this partition are given
by P n = {C(α) = [a1, . . . ,an] : α = (a1, . . . ,an) ∈ A n}. We can compute the entropy of the
partition P n:

Hµ(P n)=− ∑
(a1,...,an)∈A n

pa1 · . . . · pan log(pa1 · . . . · pan)

=−∑
j

∑
(a1,...,an)∈A n

pa1 · . . . · pa j · . . . · pan log pa j

=−∑
j

∑
a j

pa j log pa j

∑
ai ,i 6= j

pa1 · · · pa j−1 pa j+1 · pan

=−n
∑
a

pa log pa,

from where it follows that hµ(T,P )=−∑
a∈A pa log pa.

Computing hµ(T) is in general much harder, as we have to compute a supremum over

all partitions. For this, we have the following theorem:

Theorem 2.4.13 (Kolmogorov-Sinai). Suppose that P is a partition with finite entropy
such that σ (

⋃
n P n)=B. Then hµ(T)= hµ(T,P ).

Proof. This is corollary 9.2.5 from [VO16]. �

Using the previous theorem we can see that for a Bernoulli measure on the symbolic

space, we have that hµ(T)=−∑
a∈A pa log pa. We formulate now a notion of local entropy.

Definition 2.4.14. For a partition P with finite entropy, we define the function

x 7→ hµ(T,P , x)= lim
n→∞−1

n
logµ(P n(x))

and call it the local entropy function.

The local entropy function is well-defined almost everywhere thanks to the Shannon-

McMillan-Breiman theorem:

Theorem 2.4.15 (Shannon-McMillan-Breiman). The limit defining hµ(T,P , x) exists for
µ-almost every x ∈ X . The function x 7→ hµ(T,P , x) is integrarble and one has∫

X
hµ(T,P , x)dµ= hµ(T,P ).

If T is ergodic with respect to µ, then hµ(T,P , x)= hµ(T,P ) for almost every x ∈ X .

Proof. This is Theorem 9.3.1 from [VO16] �
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The previous result, combined with Kolmogorov-Sinai’s theorem give a way to compute

the entropy of a transformation T using local analysis of a convenient partition.

Finally, we introduce the notion of Lyapunov exponent. While we introduced entropy

in a general setting, for the Lyapunov exponent we restrict ourselves to maps of the

unit interval, so we can give a definition simple enough for our purposes. For the rest of

this section, X = [0,1], µ a probability measure on X and T : [0,1]→ [0,1] a µ-invariant,

piece-wise differentiable map with − logT ′ integrable with respect to µ.

Definition 2.4.16. We define the Lyapunov exponent of T with respect to µ by

λµ =
∫

X
log

∣∣T ′∣∣dµ.

Note that the Lyapunov exponent represents the average exponent of the derivative of

the map T. In general this is a measure of the expansion properties of the dynamics. By

the chain rule and the ergodic theorem, we have that

λ= lim
n→∞−1

n
log

∣∣(Tn)′(x)
∣∣

for Lebesgue-almost every point x ∈ [0,1].

2.5 Gibbs measures

In this section we introduce the concept of Gibbs measures, which provides a general-

ization of Bernoulli measures in symbolic spaces. We give a brief motivation for this in

a probabilistic context: suppose that (X ,B,µ,T) is a probability preserving dynamical

system and ϕ : X →R a measurable function. We can construct a time series Zn =ϕ◦Tn,

which by invariance of T, is stationary. This process is in general not i.i.d., but in some

concrete cases it can be. Consider for instance (X ,B,µ,T) be a Bernoulli shift, and

ϕ(x)= x1, where x = (x1, . . .) ∈ X =A N. We can think of this random variable as sampling

the first digit of random sequences in X , according to the probability measure µ. In

this setting, the process Zn =ϕ◦Tn corresponds to sampling the n-th digit of random

sequences, and as such, it is an i.i.d. process. Gibbs measures allow the time series Zn to

have a certain degree of dependence. We proceed to introduce their definition:

Definition 2.5.1. Let (X ,B,T) be a symbolic space with alphabet A . A measure µ is a
Gibbs measure for an observable ϕ : X →R if there exist constants C > 0 and P = P(ϕ) ∈R
such that

C−1 ≤ µ ([a1, . . . ,an])
exp

(−nP(ϕ)+∑n−1
k=0ϕ

(
Tkx

)) ≤ C
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2.6. ITERATED FUNCTION SYSTEMS

for any (a1, . . . ,an) ∈ A n and x ∈ [a1, . . . ,an]. We call the number P(ϕ) the topological

pressure of ϕ.

The regularity of the observable ϕ will play an essential role in the investigation of

chapter 3. In general, Gibbs measures posses nice ergodic properties:

Lemma 2.5.2. Gibbs measures are mixing, and consequently, ergodic.

Proof. This is lemma 1.13 from [Bow08]. �

In general, we will consider Gibbs measures in symbolic spaces and project them to the

unit interval [0,1] and study the properties of these projected measures.

2.6 Iterated function systems

In example 2.1.11 we introduced the notion of iterated function system in Rn. Let

{S1, . . . ,Sm : X → X } be an IFS with attractor F. The structure of F can be described as

follows: let S be the set of all non-empty compact subsets of X , and define a function

S : S →S by

S(E)=
m⋃

k=1
Sk(E).

Lemma 2.6.1. For any non-empty compact set E ∈S with S i(E) ⊂ E for all i, we have
that

F =
∞⋂

k=0
Sk(E).

Proof. This is Theorem 9.1 from [Fal04]. �

Example 2.6.2. Consider X =R, S1 = 1
3 x and S2 = 1

3 x+ 2
3 . The the associated attractor F

is the usual Cantor set. In figure 2.2 the process of applying the different contractions to
the interval [0,1].

Example 2.6.3. Consider now X =R2 and the contractions

S1 =
(

1
2

x+ 1
4

,
1
2

y+
p

3
4

)

S2 =
(
1
2

x+ 1
2

,
1
2

y
)

S3 =
(
1
2

x,
1
2

y
)
.
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Figure 2.2: First four iterations of the construction of the Cantor set

Then the associated attractor F is the Sierpinski triangle. In figure 2.3 we show the fourth
iteration of the process to construct F, that is, we show the set

⋃
i∈I4 S i(E) with E being

an equilateral triangle.

Figure 2.3: Fourth iteration of the construction of the Sierpinski triangle.

We can describe the attractor F by making use of the idea of coding. Denote the set of

finite words length n by In := {1, . . . ,m}n. Then

Sk(E)=⋃
Ik

Si1 ◦ · · · ◦Sik (E).

From this and lemma 2.6.1 it follows that if Si(E)⊂ E for all i, then for each x ∈ F and

there exists a sequence (i1, . . .) ∈ {1, . . . ,m}N such that x ∈ Si1 ◦ · · · ◦Sik (E) for all k ≥ 1.

Thus, we have that

x =
∞⋂

k=1
Si1 ◦ · · · ◦Sik (E).
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We are interested in studying the geometric properties of the attractor of IFS. This

problem is in general hard, but for a certain class of IFS much progress has been made.

Definition 2.6.4. Let {S1, . . . ,Sm} be an IFS in Rn. We say the maps Si are similarities if
there exist numbers r i ∈ (0,1) such that

|Si(x)−Si(y)| = r i|x− y|

for all x, y ∈Rn. In this case we call the attractor F of the IFS a self-similar set and the
numbers r i the similarity ratios.

In this case, given that the system satisfies a separation condition (see definition 5.2.1),

then the Hausdorff dimension satisfies an equation in terms of the ratios r i (see theorem

5.2.2). A more complicated case is when the maps Si are not similarities but linear maps.

Definition 2.6.5. We say that a transformation S : Rn →Rn is affine if it can be written
as

S(x)= Ax+b,

where A is an n×n matrix and b ∈Rn. If an IFS consists of contracting affine transfor-
mations, we say that the attractor is a self-affine set.

In order to study the dimension theoretical properties of self-affine sets, Falconer intro-

duced in [Fal97] the singular value function. This function keeps track of the rate of

contraction in the strongest directions for products of matrices, and enables us to obtain

precise information about the scale and number of elements of optimal coverings used to

obtain effective bounds for the Hausdorff dimension of attractors.

2.7 Sequential and random dynamical systems

In this section we introduce the general theory of sequential and random dynamical

systems. While for the sake of clarity we do most of it in great generality, we will work in

a context of one dimensional piecewise continuous transformations of the unit interval.

We will limit to the case of dynamics indexed by a discrete set, but a more general

definition can be given. In this section (X ,B,m) represents a probability space. We will

refer to m as the reference measure.
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Definition 2.7.1. A (random) dynamical system consists of a probability space (Σ,M ,P),
a measurable transformation σ : Σ→ Σ such that σ◦P = P, a measurable space (X ,B)

and for each ω ∈ Σ, a measurable transformation Tω : X → X of the space (X ,B). With
this, we define a random dynamics by

F : Σ× X →Σ× X

F(ω, x)= (σ(ω),Tω(x)).

We will often refer to X as the phase space of the dynamics, and to the maps given by the

individual actions of F(s, ·) as the dynamics. For random dynamical systems, we will call

Σ the noise space.

The way we think of random dynamical systems is as follows: we sample an element ω of

the noise space Σ according to the probability distribution P, and this element defines

a sequence {σn(ω)}. Associated to each element of the sequence, there is a map Tσn(ω),

and we compose these maps sequentially: Tω, Tσ(ω) ◦Tω, Tσ2(ω) ◦Tσ(ω) ◦Tω. The second

component of the iterates of F gives the composition of this sequences of maps. We define

the n-fold composition of F with itself by

Fn(ω, x)= (σn(ω),Tσn(ω) ◦ · · · ◦Tω).

The next example is the main example of random dynamical systems that we are going

to work with:

Example 2.7.2. Suppose {T1, . . . ,Tm} is a finite family of measurable transformations on
X , and p = (p1, . . . , pm) ∈ (0,1)m is a probability vector which defines a probability measure
P on {1, . . . ,m}. Define the noise space Σ= {1, . . . ,m}N with the probability measure P= P⊗N

and σ(ω)n =ωn+1, that is, the left shift on Σ. For each element ω ∈Σ, define Tω = Tω1 , so
then Fn(ω, x)= (σn(ω),Tωn ◦ · · · ◦Tω1). We will call this type of random dynamical system
an i.i.d. random dynamical system.

For random dynamical systems, it is often not the case that there exists an invariant

measure for all maps. We need a notion which takes into account the random nature of

random dynamical systems:

Definition 2.7.3. A measure µ on X is called a stationary measure for the random
dynamical system F : Σ× X →Σ× X if

µ(A)=
∫
Σ
µ

(
T−1
ω (A)

)
dP(ω)

for all measurable subsets A of X , or equivalently, the measure P⊗µ on Σ×X is invariant
under F.
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The previous definition means that the measure µ is invariant in average. Now we show

a basic model of sequential and random dynamical systems:

Example 2.7.4. Let X = [0,1] and the transformations T1(x)= 2x (mod 1) and T2(x)= 3x
(mod 1). For a given sequence ω ∈ {1,2}N, define the sequential composition of the maps
T1,T2 according to the sequence ω as the sequence of maps T k = Tωk ◦ · · · ◦Tω1 . Note that
the Lebesgue measure m is invariant for both maps T1,T2, and so is for the sequential
compositions T k. This will not be the case in general for the maps we will study in chapter
4.

We can also construct an i.i.d. random dynamical system F : Σ× X →Σ× X with this set
of transformations. A stationary measure for this system is given by P⊗m.

In section 2.1 we introduced the notion of non-singular transformations: a measurable

function T : X → X is non-singular with respect to m if m(T−1A) = 0 if and only if

m(A)= 0 for A ∈B. This means that the transformation T does not turn sets of measure

0 into sets of positive measure. One of the consequences of this is that the pushforward

measure T∗m is absolutely continuous with respect to m, where T∗m(A) = m(T−1A) .

Moreover:

Lemma 2.7.5. If µ f is an absolutely continuous measure with respect to m, with density
f ∈ L1(m), then T∗µ f is also absolutely continuous with respect to m.

Proof. This follows immediately from the non-singularity of T with respect to m. �

By Radon-Nikodym’s theorem (Theorem 8.9 in [Bar14]), the density of the measure T∗µ f

is a function in L1(m).

Definition 2.7.6. We define the transfer operator of T with respect to m as the function

P : L1(m)→ L1(m)

f 7→ dT∗µ f

dm
.

We also define the Koopman operator of T with respect to m as the function

U : L∞(m)→ L∞(m)

g 7→ g ◦T.

The transfer operator and the Koopman operator satisfy a duality relation:
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Proposition 2.7.7. For every f ∈ L1(m) and g ∈ L∞(m) we have that∫
X

P f · gdm =
∫

X
f ·U gdm.

Moreover, P f is the unique element of L1(m) such that this equality holds for all g ∈
L∞(m).

Proof. First we check that the equality holds: for such choices of f , g we have that∫
X

P f · gdm =
∫

X

dT∗µ f

dm
gdm

=
∫

X
gd(T∗µ f )

=
∫

X
g ◦Tdµ f

=
∫

X
f · g ◦Tdm,

proving the assertion. To check that P f is the unique function satisfying the equality,

suppose that there are two functions h1,h2 ∈ L1(m) such that the equality holds. Then,

taking g = sign (h1 −h2) we have that∫
X
|h1 −h2|dm =

∫
X

(h1 −h2)gdm

=
∫

X
h1 gdm−

∫
X

h2 gdm

=
∫

X
f g ◦Tdm−

∫
X

f g ◦Tdm

= 0,

from where it follows that h1 = h2 in L1(m) as claimed. �

From this proposition it is easy to see that the transfer operator associcated to Tn is

Pn, the n-fold composition of P with itself. In this section we will consider compositions

of different maps, and consequently, we will have different transfer operators. More

precisely, consider a collection of non-singular transformations {Tα}α on X , with associ-

ated transfer operators {Pα}α. For any sequence (α1, . . . ,αn), we consider the composition

Tαn ◦ · · · ◦Tα1 . By applying 2.7.7 successively to Tαn ◦ · · · ◦Tα1 we obtain that its transfer

operator is given by Pαn ◦ · · · ◦Pα1 .

Suppose now that the family of maps is finite, so we list it as {Tα1 , . . . ,Tαm}, and define

Ω= {α1, . . . ,αm}⊂ (0,α). Given a probability distribution on P= (p1, . . . , pm) on Ω, define a

Bernoulli measure P⊗N on Σ=ΩN by P⊗N{ω :ω j1 =α j1 , . . . ,α jk = ak}=∏k
i=1 pα ji

for every
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finite cylinder and extending to the sigma-algebra generated by the cylinders of Σ by

Kolmogorov’s extension theorem. This measure is invariant and ergodic with respect to

the shift operator τ on Σ , τ : Σ→ Σ acting on sequences by (τ(ω))k =ωk+1 (see section

2.1). We will denote P⊗N by ν from now on.

For ω ∈Σ define T n
ω := T(τnω)1 ◦ · · · ◦Tω1 = Tωn ◦ · · · ◦Tω1 . We define the random dynamical

system F :Σ× X →Σ× X by F(ω, x)= (τω,Tω1 x). We will also use Ω-indexed subscripts

for random transfer operators associated to the maps Tωi so that Pωi := PTωi
. We will

also abuse notation and write Pω for Pω1 if ω= (ω1,ω2, . . . ,ωn, . . .). The analogue concept

of invariance for a random dynamical system is stationarity, as defined in section 2.1. In

this setting, it is equivalent to

µ(A)=
∫
Σ
µ

(
T−1
ω1

(A)
)
dν(ω)

for every measurable set A. We now define a transfer operator for the random dynamical

system, which captures the average behavior of the transfer operators of the individual

transformations:

Definition 2.7.8. The annealed transfer operator P : L1(m)→ L1(m) is defined by aver-
aging over all the transformations:

P = ∑
ω∈Ω

pωPω =
∫
Σ

Pω dν(ω).

The annealed Koopman operator U : L∞(m)→ L∞(m) defined by

Uϕ(x)= ∑
ω∈Ω

pωϕ(Tωx)=
∫
Σ
ϕ(Tωx)dν(ω).

The annealed operators satisfy the same duality relationship as the usual operators:

Lemma 2.7.9. ∫
X

(Uϕ) ·ψ dm =
∫

X
ϕ ·Pψ dm

for all observables ϕ ∈ L∞(m) and ψ ∈ L1(m).

Our main interest is in establishing statistical laws for the sequence of compositions

Tαn ◦ · · · ◦Tα1 , either for a fixed sequence {αi}i≥1 or random choices of it according to a

probability distribution on Ω. In general we distinguish three different regimes, which

we informally describe as:

1. We say that a result is sequential if it holds for all choices of sequences in Σ;
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2. We say that a result is annealed if it holds for the average sequence in Σ;

3. We say that a result is quenched if it holds for almost every choice of sequence in Σ.

It may seem that quenched results are weaker than sequential ones, but in general for

sequential results, rates and constants depend on the choice of the sequence of maps

while quenched results hold uniformly for all sequences in a set of total probability.

32



C
H

A
P

T
E

R

3
DIMENSION OF MEASURES WITH INFINITE ENTROPY

3.1 Introduction

In this chapter we study the dimension of measures invariant under a certain class

of maps of the unit interval [0,1]: Expanding Markov Renyi (EMR) maps. These maps

T : [0,1] → [0,1] admit representations by means of symbolic dynamics, and satisfy

smoothness properties that allow us to use ergodic theoretic methods to study their geo-

metric properties. Given an ergodic T-invariant probability measure µ, we are interested

in the pointwise behavior of the local dimension

d(x)= lim
r→0

logµ(B(x, r))
log r

,

where B(x, r) denotes the open ball of center x and radius r. This limit in general may

not exist, in which case we study the corresponding limit superior and limit inferior (see

definition 2.3.6). When the limit exists almost everywhere, we say that the measure is

exact dimensional. If this is the case, by ergodicity of µ the value of the local dimension

is constant almost everywhere (see proposition 2.2.2). Knowledge of the almost sure

behavior of the local dimension yields information about the Hausdorff and the packing
dimension of the measure (see proposition 2.3.7).

There are two dynamical quantities which are particularly relevant when studying

the local dimension of such measures: the metric entropy hµ (or simply the entropy)

and the Lyapunov exponent λµ of (T,µ) (see section 3.4 for the ad-hoc definitions of hµ,

λµ). Formulae relating the dynamical invariants hµ,λµ and the local dimension have
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been extensively studied for the last few decades in the case hµ < ∞. For Bernoulli

measures invariant under the Gauss map, Kinney and Pitcher proved in [KP66] that if

the measure µ is defined by a probability vector p = {pi}, the Hausdorff dimension of µ

can be computed with the formula

dimH µ= −∑∞
n=1 pn log pn

2
∫ 1

0 | log x|dµ(x)

provided that
∑∞

n=1 pn logn <∞.

For more general maps of the interval, in [LM85] the authors proved that for a C 1 map

T : [0,1]→ [0,1] where T and T ′ are piecewise monotonic and the Lyapunov exponent λµ
is positive, if µ is an invariant ergodic probability measure, then [LM85, corollary in the

appendix] we have that the measure is exact dimensional and

lim
r→0

logµ(B(x, r))
log r

= hµ
λµ

µ-almost everywhere. In particular, dimH µ= hµ/λµ by proposition 2.3.7. Other versions

of the formula were proved by Young and Hofbauer, Raith in [You82] and [HR92], among

others. In all of these examples, it is assumed 0 < λµ <∞. In the context of countable

Markov systems, Mauldin and Urbanski proved ([MU03, theorem 4.4.2]) the following

theorem:

Theorem 3.1.1 (Volume Lemma). Let (X ,T) be a countable Markov shift coded by the
shift in countably many symbols (Σ,σ). Suppose that µ is a Borel shift-invariant ergodic
probability measure on Σ such that at least one of the numbers Hµ(α) or λµ is finite, where
Hµ(α) is the entropy of µ with respect to the natural partition α in cylinders of Σ (see
definition 2.4.5). Then µ is exact dimensional and

dimH(µ◦π−1)= hµ
λµ

,

where π : Σ→ X is the coding map.

The case when λµ = 0 was studied by Ledrappier and Misiurewicz in [LM85], wherein

they constructed a C r map of the interval and a non-atomic ergodic invariant measure

which has zero Lyapunov exponent and is such that the local dimension does not exist

almost everywhere. More precisely, they show that the lower local dimension and upper

local dimension are not equal ([LM85, theorem 1]):

dµ(x)= liminf
r→0

logµ(B(x, r))
log r

< limsup
r→0

logµ(B(x, r))
log r

= dµ(x)
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almost everywhere. For this construction, the authors consider a class of unimodal maps

(Feigenbaum’s maps).

The dimension of Bernoulli measures for the Gauss map G was studied by Kifer, Peres

and Weiss in [KPW01], where they show that there is a universal constant ε0 > 10−7 so

that

dimH(µp ◦π−1)≤ 1−ε0

for every Bernoulli measure on the symbolic space coding the Gauss map, where π is the

coding map. This inequality holds even for the case where the entropy of the measure is

infinite. They also show that for an infinite entropy Bernoulli measure µ, the Hausdorff

dimension satisfies dimH µ ≤ 1/2. Their method relies on estimating the dimension of

the sets of points for which the frequency of a sequence of digits in their continued

fraction expansion differs from the expected value by a certain threshold is uniformly

(with respect to the sequence of digits) bounded from 1, and a bound on the dimension

of points that lie in unusually short cylinders. This situation has been recently studied

by Jurga and Baker (see [Jur18] and [BJ18]) using different methods. Concretly, in

[Jur18] the author uses ideas of the Hilbert-Birkhoff cone theory and extract information

about the dynamics through the transfer operator. On the other hand, in [BJ18]) the

authors construct a Bernoulli measure µq such that supp dimH µp = dimH µq, where the

supremum is taken over all Bernoulli measures. This in conjunction with the Variational

Principle (see [Wal00]) yield their result.

The focus of our investigation is twofold: in the first place, we investigate the Hausdorff

dimensions of invariant ergodic measures for piecewise expanding maps of the interval

with countably many branches. In particular, we focus on maps exhibiting similar

properties to the Gauss map and measures with infinite entropy and infinite Lyapunov

exponent. In the second place, we show that the measures considered are not exact

dimensional, by showing that the upper dimension is positive while the lower dimension

is zero almost everywhere.

The main result of this chapter is:

Theorem 3.1.2. Let T : [0,1] → [0,1] be a Gauss-like map and µ be an infinite entropy
Gibbs measure of controlled decay, and such that the decay ratio s exists . Then dµ(x)=
0,dµ(x)= s µ-almost everywhere.

This shows that there is a dimension gap for this class of maps and measures. For

the Gauss map, s = 1/2. The Gibbs assumption on the measure implies that a certain
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sequence of observables can be seen as a non-integrable stationary ergodic process

and allows us to use some tools of infinite ergodic theory developed by Aaronson and

Nakada (see [Aar77], [AN03]). In particular, the pointwise behavior of the Birkhoff sums

excluding the biggest term of such sums (trimmed sums) plays a fundamental role in our

arguments. We remark that the methods used in the context of finite entropy fail, as

they rely on the fact that the measure and diameter of the iterates of the natural Markov

partition decrease at an exponential rate given by hµ and λµ respectively, enabling the

use of coverings by balls of different scales. To tackle this problem, we make use of more

refined coverings of balls, which are capable of detecting the asymptotic interaction

between the Gibbs measure and the Lebesgue measure.

3.2 Expanding Markov-Renyi maps

Recall the proof that the Gauss measure µ is ergodic with respect to the Gauss map T
(see proposition 2.2.4). The essential ingredients of the proof are the metric estimates∣∣T ′(x)

∣∣≥ 1 ,
∣∣(T2)′(x)

∣∣≥ 2 ,
∣∣T ′′(x)/T ′(x)2∣∣≤ 2,

the fact that the invariant measure µ is absolutely continuous with respect to the

Lebesgue measure m, and that T is locally a bijection. We define a general class of maps

which satisfy these properties, and hence, the same results apply to them.

Definition 3.2.1. We say that a map T : I → I of the interval I = [0,1] is an EMR

(expanding Markov-Renyi) map if there is a countable collection of closed intervals {I(n)}

(with disjoint interiors int I(n)) such that:

1. The map is C 2 on
⋃

n int I(n),

2. Some power of T is uniformly expanding, i.e., there is a positive integer r and a
constant α> 1 such that |(Tr)′(x)| ≥α for all x ∈⋃

n int I(n),

3. The map is Markov and can be coded by a full shift (see next subsection),

4. The map satisfies Renyi’s condition: there is a constant E > 0 such that

sup
n∈N

sup
x,y,z∈I(n)

|T ′′(x)|
|T ′(y)||T ′(z)| ≤ E,

Under these condition, the following results hold (see theorem in 1 of section 4, chapter 7

of [CFS12]):
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Theorem 3.2.2. Suppose that T is an EMR map. Then there exists a T-invariant Borel
probability measure µ, which is equivalent to the Lebesgue measure m, and K−1 ≤ dµ

dm ≤ K
for a positive constant K . The measure µ is mixing, and in particular, ergodic.

The construction of the measure follows a standard argument of taking a weak limit of

the sequence pushforwards of the reference measure through the dynamics. The metric

condition 4 of the definition of EMR map is stronger than the metric properties of the

proof of the ergodicity of the Gauss measure. Condition 2 is a uniform hyperbolicity

condition for some iterate of the map.

This class of maps was first introduced in [PW99] in the context the multifractal analysis

of the Lyapunov exponent for the Gauss map. Renyi’s condition provides good estimates

for the Lebesgue measure of the cylinders associated to the Markov structure of the map

(see next subsection). While the absolutely continuous invariant measure is an object

of interest in dynamical systems, we will study measures which are mutually singular

with respect to this measure. The above properties of the map are useful to give metric

estimates in terms of symbolic dynamics (see section 3.3).

For simplicity, we will assume that the maps are orientation preserving (the orientation

reversing case only differs in the relative position of the cylinders). The set of branches

must accumulate at least at one point, and we assume that it accumulates at exactly

one point: we also assume that the branches accumulate on the left endpoint of I (the

case when the branches accumulate in the right endpoint of I is analogous). Re-indexing

if necessary, we can assume that I(n+1)< I(n) for all n, in the sense that x < y for all

x ∈ int I(n+1) and y ∈ int I(n). Let rn = |I(n)|.

Definition 3.2.3. We say that an EMR map T is a Gauss-like map if it satisfies the
following conditions:

1. rn > 0 for every n ∈N,

2. rn+1 ≤ rn,

3.
∑

n rn = 1,

4. 0< K ≤ rn+1/rn ≤ K ′ <∞ for some constants K ,K ′,

5. {rn} decays at most polynomially as n goes to infinity (see definition (3.6.3)).

In figure 3.1 we show a generic example of a Gauss-like map.
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1

0 11/21/31/4

Figure 3.1: Example of an orientation-preserving Gauss-like map with the choice I(n)=[ 1
n+1 , 1

n
]
.

We want to keep in mind piecewise linear functions as the main example, as for this

class of maps, calculations are simplified. We will also keep in mind the example of the

Gauss map.

3.3 Markov structure and symbolic coding

We describe now the Markov structure of the maps considered. Given a finite sequence

of natural numbers (a1, . . . ,an) ∈Nn, the n-th level cylinder associated to (a1, . . . ,an) is

the set I(a1, . . . ,an)= Ia1 ∩T−1(I(a2))∩. . .∩T−(n−1)(I(an)). Let O =⋃
n
⋃

k T−n(∂I(k)), then

given x ∈ [0,1]\O and n ∈N, there exists a unique sequence (a1(x),a2(x), . . .) ∈NN such

that x ∈ I(a1(x), . . . ,an(x)) for every n (here ∂I(k) represents the boundary of the set I(k),

in this case, consisting of the two endpoints of the interval). We denote this sequence

by (a1,a2, . . .) when x is clear from the context. We also denote In(x)= I(a1, . . . ,an) and

we say x is coded by the sequence (an). From now on, whenever we say x ∈ I, we mean

x ∈ I \O .

Let Σ=NN and σ : Σ→Σ be the left shift over N: (σ(xn))n = xn+1. Then the cylinders in

the symbolic space are defined by

C(a1,a2, . . . ,an)= {
(xn) ∈Σ | x j = a j for j = 1, . . . ,

}
.

We endow the space Σ with the topology generated by the cylinders defined above. Then

the map π : Σ→ I \O given by π((xn))=⋂
n I(x1, . . . , xn) is a continuous bijection.
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Given x ∈ I with coding sequence (an) and n ≥ 1, denote by I l
n(x)= I(a1, . . . ,

an−1,an +1) (resp Ir
n(x)= I(a1, . . . ,an−1,an −1) if an ≥ 2) the level n cylinder on the left

(resp right) of In(x). Also, denote by În(x)= In(x) ∪ Ir
n(x) ∪ I l

n(x). If there is no risk of

confusion, we omit the dependence on x.

Renyi’s condition introduced in the previous subsection implies that the length of each

cylinder is comparable to the derivative of the iterates of the map at any point of the

cylinder. More precisely,

Lemma 3.3.1. There exists a constant D > 0 such that

0< D−1 ≤ ∣∣(Tn)′(x)
∣∣ · |I(a1, . . . ,an)| ≤ D

for every finite sequence (a1, . . . ,an) ∈Nn and x ∈ I(a1, . . . ,an).

Proof. The proof of the ergodicity of the Gauss map 2.2.4 applies mutatis mutandis in

this setting and shows that ∣∣(Tn)′ (x)
∣∣∣∣(Tn)′ (y)
∣∣ ≤ C1

for some constant C1, for all x, y ∈ I(a1, . . . ,an), (a1, . . . ,an) ∈Nn. Integrating with respect

to the Lebesgue measure over y yields the result. �

A notion of dimension which is more adapted to the underlying structure of our dynamical

system is the symbolic dimension, which we proceed to define.

Definition 3.3.2. Given x ∈ I, we define the lower symbolic dimension of µ at x by

δ(x)= liminf
n→∞

logµ(In(x))
log |In(x)| ,

and the upper symbolic dimension of µ at x by

δ(x)= limsup
n→∞

logµ(In(x))
log |In(x)| ,

If δ(x)= δ(x), then we define the symbolic dimension of µ at x as the common value, denote
it by δ(x), and we say that µ is symbolic exact dimensional if δ(x)= δ(x) almost everywhere
with respect to µ.

We recall now the definition of Gibbs measures:
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Definition 3.3.3. Let µ be an invariant probability measure with respect to T. Then we
say that µ is a Gibbs measure associated to the potential logϕ : Σ→R, that is, there exists
a constant C > 0 so that

C−1 ≤ µ(C(a1, . . . ,an))
exp

(−nP(logϕ)+Sn(logϕ)(x)
) ≤ C,

where x is any point in C(a1, . . . ,an), (a1, . . . ,an, . . .) is any sequence in Σ, Sn f (x) is the
Birkhoff sum of f at the point x, and P(logϕ) is a constant (depending on the potential).

The constant P(logϕ) is usually called the topological pressure of logϕ. In this chapter

we will not call such constant pressure, as it does not carry the same meaning it does in

the finite entropy case. Throughout this work we will assume that P(logϕ)= 0, otherwise

we can take the potential logϕ−P(logϕ) for which P
(
logϕ−P(logϕ)

)= 0. It is important

to note that it is not trivial that this will not affect our computations, and we will show

later how we can overcome that difficulty. The sequence pn =µ(I(n)) will be of particular

relevance for our computations.

We can project this measure to I by setting µ̂=π−1 ◦µ. We assume these measures are

invariant and ergodic with respect to T. We will denote by µ both the measure in the

symbolic space and the projected measure.

We define the n-th variation of the potential logϕ by

varn(logϕ)= sup{| logϕ(x)− logϕ(y)| | x, y ∈ I(a1, . . . ,an), (a1, . . . ,an) ∈Nn}.

Definition 3.3.4. Let xn be the unique fixed point of T in I(n). We define then the decay

ratio by

s = lim
n→∞

logϕ(xn)
log rn

= lim
n→∞

log pn

log rn
,

whenever any of these limits exists. Similary, the tail decay ratio is defined by

ŝ = lim
n→∞

log
∑

m≥nϕ(xm)
log

∑
m≥n rm

= lim
n→∞

log
∑

m≥n pm

log
∑

m≥n rm
.

Whenever these two quantities exists, both definitions given for s and ŝ agree since µ is

a Gibbs measure. Throughout this chapter we will assume that the decay ratio exists for

our measure. Note also that the definitions above are independent of the choice of the

point xn representing each cylinder if var1(logϕ)<∞. By the Cersàro-Stolz theorem (see

[Fur13, Appendix B]) we can write the decay ratio as

s = lim
n→∞

∑n
k=1 pn log pn∑n
k=1 pn log rn

.
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Definition 3.3.5. Assume that var1(logϕ)<∞. Suppose that for the sequence q = {qn}n =
{ϕ(xn)}n we have

0< K ≤ pn+1/pn ≤ 1

for every n ∈N, for a constant K . Then we say that µ has controlled decay.

This condition prevents the existence of large jumps for the potential along sufficiently

sparse subsequences of {xn}. By the Gibbs property, the properties hold if we replace pn

by qn.

3.4 Entropy and Lyapunov exponent

Our main results are for a class of measures with infinite entropy. This condition can be

expressed by saying that the potential − logϕ is not integrable with respect to µ.

Our definition of entropy differs from the conventional (see section 2.4), as we deal with

partitions with infinite entropy. For this, recall the Shannon-McMillan-Breiman theorem

adapted to our system, which in the case of Gibbs measures, is equivalent to the Ergodic

theorem:

Theorem 3.4.1 (Shannon-McMillan-Breiman, infinite entropy). For any Gibbs measure
µ associated to a potential with finite first variation, the limit

lim
n→∞−1

n
log

(
µ(In(x))

)
(3.1)

exists µ-almost everywhere and is constant. If
∑

n−pn log pn <∞, then such constant is
finite; otherwise, it is equal to infinity.

The proof for the case when the series is finite is the usual for Shannon-McMillan-

Breiman theorem, see section 9.3 in [VO16]. The proof for the infinite case follows from

lemma 3.4.2 and lemma 3.4.3, using that the measures have the Gibbs property. We

define then the entropy hµ as the almost sure value of the limit in theorem 3.4.1.

Lemma 3.4.2. For a Gibbs measure with finite first variation, the entropy hµ is finite if
and only if any of the series

−
∞∑

n=1
qn log qn , −

∞∑
n=1

pn log pn

converges.
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Proof. The partition of [0,1] by cylinders {I(n)} is a generating partition, and hence

theorem 2.4.13 allows us to compute the entropy of µ using the entropy of this partition.

The entropy of µ with respect to this partition is given by

H(µ,α)=−
∞∑

n=1
pn log pn.

The convergence of this series is equivalent to the convergence of −∑∞
n=1 qn log qn since

we have

exp(−var1 logϕ)< qn

ϕ(x)
< exp(var1 logϕ),

C−1 ≤ pn

ϕ(x)
≤ C

for any x ∈ I(n). �

We prove a well known fact about non-integrable observables.

Lemma 3.4.3. Let f : [0,1] → R be a bounded below measurable function such that∫ 1
0 f dµ=∞. Then

lim
n→∞

1
n

n−1∑
k=0

f ◦Tk(x)=∞

for µ almost every point.

Proof. The proof is an standard application of the Monotone Convergence Theorem.

Assume f is positive (otherwise, decompose f into its positive and negative part) and let

M > 0. Then

liminf
n→∞

1
n

n−1∑
k=0

f ◦Tk(x)≥ lim
n→∞

1
n

n−1∑
k=0

min{ f ◦Tk, M}(x)

=
∫ 1

0
min{ f , M}(x)dµ(x)

by Birkhoff ’s Ergodic Theorem applied to min{ f , M}. By the Monotone Convergence

Theorem,

lim
M→∞

∫ 1

0
min{ f , M}(x)dµ(x)=

∫ 1

0
f dµ(x)=∞

from where we conclude the result. �
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This result implies in particular that we can assume that the pressure of our potential is

zero, as Sn(logϕ) dominates −nP(logϕ) when logϕ is not integrable.

Now we can finish the proof of theorem 3.4.1 by noting that the Gibbs property of µ

implies that

−1
n

logC− 1
n

Sn(logϕ)(x)≤−1
n

log(µ(In(x)))≤ 1
n

logC− 1
n

Sn(logϕ)(x),

and using that the first variance of (logϕ) is finite, we can also bound the integral of

logϕ by ∫
X

logϕdµ≥
∞∑

k=1
µ (I(k)) min

x∈I(k)
logϕ(x)≥ C

∞∑
k=1

pk log pk +
∞∑

k=1
pk logC,

and by applying lemmas 3.4.2 and lemma 3.4.3 the result follows.

3.5 Symbolic dimension

We formulate a lemma regarding the metric and measure theoretic properties of the

cylinders associated to the map. This will allow us to write geometric quantities in

ergodic theoretic terms. Its proof is a standard application of the bounded distortion and

Gibbs properties.

Lemma 3.5.1. For every finite sequence (a1, . . . ,an) ∈Nn and j ∈N, we have that

(a)
∣∣log |I(a1, . . . ,an)|−∑n

k=1 log rak

∣∣≤ nD1 +D2

(b)
∣∣∣log

∣∣∣⋃ j
m=0 I(a1, . . . ,an−1,an +m)

∣∣∣−∑n−1
k=1 log rak − log

(∑ j
k=0 ran+k

)∣∣∣≤ nD1 +D2,

(c)
∣∣log

∣∣⋃∞
m=0 I(a1, . . . ,an−1,an +m)

∣∣−∑n−1
k=1 log rk − log

(∑∞
k=0 ran+k

)∣∣≤ nD1 +D2,

(d)
∣∣logµ (I(a1, . . . ,an))−∑n

k=1 log pak

∣∣≤ nG1 +G2,

(e)
∣∣∣logµ

(⋃ j
m=0 I(a1, . . . ,an−1,an +m)

)
−∑n−1

k=1 log pak − log
(∑ j

k=0 pan+k

)∣∣∣≤ nG1 +G2,

(f)
∣∣logµ

(⋃∞
m=0 I(a1, . . . ,an−1,an +m)

)−∑n−1
k=1 log pak − log

(∑∞
k=0 pan+k

)∣∣≤ nG1 +G2,

where D1,D2 are distortion constants and G1,G2 are constants arising from the Gibbs
property.
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Proof. We prove only the first part as the proof of the rest is similar. Fix a sequence

(a1, . . . ,an) ∈Nn, then by 3.3.1 we have that

0< D−1 ≤ ∣∣(Tn)′(x)
∣∣ · |I(a1, . . . ,an)| ≤ D

D−1 ≤rak |T ′(x)| ≤ D

for any x ∈ I(ak). Using the chain rule, we have that

|(Tn−1)′(x)| = |T ′(Tn−1(x))| · |T ′(Tn−2(x))| · . . . · |T ′(T1(x))| · |T ′(x)|,

from where it follows that

D−(n+1) ≤ (ra1 · . . . · ran)−1 · |I(a1, . . . ,an)| ≤ Dn+1

which yields the first part. �

We proceed to compute the symbolic dimension of our system.

Theorem 3.5.2. Let T be an EMR map and µ a Gibbs measure with controlled decay
and infinte entropy. Then if the decay ratio s exists, we have that µ is symbolic-exact
dimensional and for µ-almost every x ∈ I,

δ(x)= s.

Proof. By Lemma 3.4.3 applied to the observables logϕ and log ra1 and Lemma 3.5.1,

we have

δ(x)≤ liminf
n→∞

Sn(logϕ)(x)
−nD1 −D2 +Sn(log ra1)(x)

= liminf
n→∞

log(qa1 . . . qan)
log(ra1 . . . ran)

,

δ(x)≥ liminf
n→∞

Sn(logϕ)(x)
nD1 +D2 +Sn(log ra1)(x)

= liminf
n→∞

log(qa1 . . . qan)
log(ra1 . . . ran)

,

for almost every x ∈ I, and analogously for the upper symbolic dimension

δ(x)= limsup
n→∞

log(qa1 . . . qan)
log(ra1 . . . ran)

where (a1,a2, . . .) is the sequence coding x. With a similar argument, we can also show

that the same holds true if we switch qn for pn:

δ(x)= liminf
n→∞

log(pa1 . . . pan)
log(ra1 . . . ran)

,
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and analogously for the upper symbolic dimension.

For x ∈ I and n,k ≥ 1, define

fn,k(x)= #{i ∈ {1, . . . ,n} | ai(x)= k},

that is, the number of times the orbit of x visits the interval Ik in the first n steps. Recall

that from the Birkhoff Theorem, we have that for every k,

lim
n→∞

fn,k

n
= pk

for µ−almost every x ∈ I. In particular, the orbit of almost every x ∈ I visits every cylinder

I(n) infinitely many times. Fix x in the set where the convergence holds, and then define

m : N→N by m(n)=max{ki(x) | i ∈ {1, . . . ,n}}, where ki(x) is the i-th digit of the expansion

of x. The previous remark shows that m is unbounded, and it is clearly non-decreasing.

Thus, we can write

− log(rk1 . . . rkn)=−
n∑

j=1
log rk j =−

m(n)∑
j=1

fn, j log r j.

Given ε> 0, there exists n1 such that∣∣∣∣ log pk

log rk
− s

∣∣∣∣< ε
for every k ≥ n1, and consequently, (− log pk) < (ε+ s)(− log rk) for k ≥ n1. For n large

enough so that m(n)> n1, we write

log(pk1 . . . pkn)
log(rk1 . . . rkn)

=
∑n1

k=1 fn,k(− log pk)+∑m(n)
k=n1+1 fn,k(− log pk)∑n1

k=1 fn,k(− log rk)+∑m(n)
k=n1+1 fn,k(− log rk)

.

We split the sum in two different parts:

A(n)=
∑n1

k=1 fn,k(− log pk)∑n1
k=1 fn,k(− log rk)+∑m(n)

k=n1+1 fn,k(− log rk)
,

B(n)=
∑m(n)

k=n1+1 fn,k(− log pk)∑n1
k=1 fn,k(− log rk)+∑m(n)

k=n1+1 fn,k(− log rk)
.

For k = 1, . . . ,n1 taking εk = pk/2 in the definition of pk as a limit, there exists n2 ≥ n1

such that

npk

2
≤ fn,k ≤

3npk

2
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for every n ≥ n2. Thus, the terms
∑n1

k=1 fn,k(− log pk) and
∑n1

k=1 fn,k(− log rk) are asymptot-

ically linear in n for n, that is, when divided by n they have a finite limit. We will show

that
∑m(n)

k=n1+1 fn,k(− log rk) grows faster than linear as a function of n.

Given M > 0, since the Lyapunov exponent is infinite, there exists n3 such that

m(n)∑
k=n1+1

pk(− log rk)> 2M

for every n ≥ n3. Now, for k = n1 +1, . . . ,m(n3), take εk = pk/2 and so there exists n4 ≥ n3

such that

fn,k ≥
npk

2

for every n ≥ n4 and k = n1 +1, . . . ,m(n3). Thus

1
n

m(n)∑
k=n1+1

fn,k(− log rk)= 1
n

m(n4)∑
k=n1+1

fn,k(− log rk)+ 1
n

m(n)∑
k=m(n4)+1

fn,k(− log rk)

≥ 1
n

m(n4)∑
k=n1+1

npk

2
(− log rk)

= 1
2

m(n4)∑
k=n1+1

pk(− log rk)> M

for every n ≥ n4. This shows that A(n)→ 0 as n →∞. To estimate B(n), we note that

B(n)≤ (s+ε) ·
∑m(n)

k=n1+1 fn,k(− log rk)∑n1
k=1 fn,k(− log rk)+∑m(n)

k=n1+1 fn,k(− log rk)

Using the same argument as above, we obtain that
∑m(n)

k=n1+1 fn,k(− log rk) grows faster

than linear, so limB(n)≤ s+ε. This shows that

δ(x)≤ s.

The proof of the opposite inequality is analogous. �

3.6 The decay ratio

Now we proceed to study the properties of the decay ratio. In fact, we show that for

infinite entropy measures, it is completely determined by the properties of the partition

{I(n) | n ∈N}:
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Definition 3.6.1. The convergence exponent of the partition {rn} of I is defined by

s∞ = inf
{
s ≥ 0 |

∞∑
n=1

rs
n <∞

}
.

Proposition 3.6.2. In general, we have that s∞ ≤ s. Under the assumption that hµ =∞,
we also have s = s∞.

Proof. Given ε> 0, there exists n1 such that

(ε+ s) log rn < log pn < (s−ε) log rn

for every n ≥ n1, and thus rs+ε
n < pn for every n ≥ n1. Summing over n we get

∞∑
n=1

rs+ε
n =

n1−1∑
n=1

rs+ε
n +

∞∑
n=n1

rs+ε
n ≤

n1−1∑
n=1

rs+ε
n +

∞∑
n=n1

pn <∞.

Hence, s∞ ≤ s+ε for every ε> 0 and so s∞ ≤ s.

Now, assuming that hµ =∞, suppose that s∞ < s, and hence, there is α > 0 such that

s∞ ≤ s∞+α< s and

∞∑
n=1

rs∞+α
n <∞.

Let ε= (s− s∞−α)/2> 0, then there is an integer n0 such that

rs+ε
n ≤ pn ≤ rs−ε

n

for all n ≥ n0. This implies that

∞∑
n=n0

pn(− log pn)≤ (s+ε)
∞∑

n=n0

rs−ε
n (− log rn).

Recall the one sided limit criterion for convergence of series: let ab,bn > 0 sequences

such that

limsup
n→∞

an

bn
= c ∈ [0,∞)

and
∑

bn <∞. Then
∑

an <∞.

Let f : [0,∞)→R be the function defined by

f (x)=
{

0, for x = 0,

xε(− log x), for x > 0.
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It is easy to see that f is continuous. Taking an = rs−ε
n (− log rn) and bn = rs∞+α

n and using

the continuity of f , we get that

limsup
n→∞

an

bn
= lim

n→∞ rεn(− log rn)= 0.

We conclude that
∞∑

n=n0

pn(− log pn)≤ (s+ε)
∞∑

n=n0

rs−ε
n (− log rn)<∞,

contradicting the fact that the entropy is infinite. �

We give now a definition for the asymptotic decay of the sequence {rn}.

Definition 3.6.3. The asymptotic rate of the sequence {rn} is defined as

α= sup{t ≥ 0 | lim
n→∞ntrn <∞}.

We say that {rn} decays polynomially if α> 1, and we say that {rn} decays superpolynomi-

ally if α=∞.

We will assume that the supremum is achieved for our sequences {rn}. Note that if rn has

polynomial decay with asymptotic α, then s∞ = 1/α. For simplicity, we will assume that

the supremum of the definition is achieved for our partitions. If we know the asymptotic

of {rn}, we can compute the asymptotic of the tail of the series of {rn}:

Lemma 3.6.4. If the asymptotic of {rn} is α> 1, then the asymptotic of {Rn =∑
m≥n rn} is

α−1.

Proof. It suffices to show that the sets A = {t ≥ 1 | limn→∞ ntrn <∞} and A′ = {t ≥ 0 |
limn→∞ nt−1Rn <∞} are the same. Let t ∈ A, then limn→∞ ntrn = d, and so given ε, there

is n0 ∈N such that

(d−ε)
nt < rn < (d+ε)

nt .

for n ≥ n0. Hence, for n ≥ n0,

(d−ε)
(t−1)

≤
∞∑

m=n

nt−1(d−ε)
mt ≤ nt−1Rn ≤

∞∑
m=n

nt−1(d+ε)
mt ≤ nt−1(d+ε)

(n+1)t−1(t−1)

from which follows that t−1 ∈ A′. Now, if t ∈ A′, we have that limn→∞ nt−1Rn = d′ <∞,

and thus, given ε> 0, there is n1 ∈N such that

−ε+d′

nt ≤ ∑
m≥n

rn ≤ ε+d′

nt .
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This implies that

(−ε+d′)
nt − (ε+d′)

(n+1)t ≤ rn ≤ (ε+d′)
nt − (−ε+d′)

(n+1)t .

from which follows that t+1 ∈ A, proving the assertion. �

3.7 Infinite ergodic theory

In this section we explore the consequences of the non-integrability of the functions

− log ra1 and − log pa1 (or equivalently, hµ =λµ =∞). Using tools of infinite ergodic theory

we can prove that the diameter of the cylinders decreases faster than exponentially from

a given level to the next.

We start by showing one of the usual arguments used to compute Hausdorff dimensions

and remark how it fails in our case.

Lemma 3.7.1. Let T be an EMR map and µ a Gibbs measure. Then for almost every x ∈ I
and every r > 0 there exists n such that

logC1µ(In−1(x))
logC2|In(x)| ≤ logµ(B(x, r))

log r
≤ logµ(In(x))

log |In−1(x)| .(3.2)

for constants C1,C2.

This of this Lemma uses a well known argument and can be found for instance in

[Pes08]. Note that if λµ < ∞, then inequality (3.2) and the Ergodic Theorem would

immediately imply that s = dimH µ = dimpµ. However, since in our case λµ = ∞, the

previous argument does not work. In fact, here lies the main difficulty of the infinite

entropy and Lyapunov exponent case. The following lemma shows that the situation

is as bad as it can get: for almost every point, the diameter of the cylinders decreases

arbitrarily from one level to the next.

Theorem 3.7.2. Let T be a Gauss-like map and µ an infinite entropy Gibbs with con-
trolled decay. Then for almost every x ∈ I, we have that

liminf
n→∞

log |In(x)|
log |In−1(x)|

= 1,

and

limsup
n→∞

log |In(x)|
log |In−1(x)| =∞.
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The proof of the first equality is an immediate consequence of Poincare’s recurrence

theorem: since most orbits will visit any cylinder infinitely often, in particular they will

visit the cylinder [1,1] infinitely often. Whenever this happens, let us say at time n+1,

the ratio of the sizes (Lebesgue) of the two cylinders In(x) and In+1(x) is a constant (r1).

In particular the limit of the logarithms is equal to one. We postpone the proof of the

second equality. We will return to this issue once we set up the appropriate tools to prove

this result. A corollary to the previous theorem is the following:

Corollary 3.7.3. For almost every x ∈ I, we have that d(x)≤ s and hence dimH µ≤ s.

The main tool that we will use to prove Theorem 3.7.2 are results about the pointwise

behavior of trimmed sums.

In this section we introduce some infinite ergodic theory notions and results. Define

{gn = − log r1 ◦Tn−1}. The tail of the cumulative distribution function of g1 is F (t) =
µ(g1 ≥ t), and it can be seen that µ(g1) := ∫ 1

0 g1dµ=λµ. By invariance of the measure, the

cumulative distribution of gn is the same as F . As we saw in Lemma 3.4.3, the Ergodic

Theorem fails to provide non-trivial information. This result was vastly generalized by

Robbins and Chow for i.i.d. random variables in [CR61] and in the ergodic stationary

case by Aaronson in [Aar77] who proved the following theorem:

Theorem 3.7.4. [Aar77, theorem 1] Let f : [0,1] → R be a non-negative measurable
function. If µ( f )=∞ then for any sequence {bn} of positive numbers, either

limsup
n→∞

1
bn

n−1∑
k=0

f ◦Tk =∞ a.e.

or

lim
n→∞

1
bn

n−1∑
k=0

f ◦Tk = 0 a.e..

It is possible to prove that the lack of convergence in the previous theorem is due to a

finite number of terms which are not comparable in size to the rest of the terms of the

sum. This was proved in the i.i.d. case by Mori in [Mor76],[Mor77] and in the stationary

ergodic case by Aaronson and Nakada in [AN03]. We formulate the result by Aaronson

and Nakada in a setting appropriate for our purposes.

We denote the ergodic sum of a function f by Sn( f )(x) and define S̃n( f )(x)= Sn( f )(x)−
max

{
f , . . . , f ◦Tn−1} (x). When the dependence of Sn( f )/S̃n( f ) on f is clear, we drop it

from the notation and write Sn. We refer to S̃n as the trimmed ergodic sum of f .
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Definition 3.7.5. We say that the sequence
{
f ◦Tk}

has trimmed convergence if there
exists a sequence {bn} such that

lim
n→∞

S̃n(x)
bn

= 1

almost surely.

In order to ensure trimmed convergence, it is necessary that the process satisfies certain

mixing condition.

Definition 3.7.6. For a stationary process (X1, X2, . . .), for k ≥ 1 and k < N+1≤∞, denote
by σN

k =σ(Xk, . . . , XN+1), that is, the sigma-algebra generated by the random variables
(Xk, . . . , XN+1). Define also

ϑ(n)= sup
{∣∣∣∣ µ(A∩B)
µ(A)µ(B)

−1
∣∣∣∣ : A ∈σk

1 ,B ∈σ∞
k+n,µ(A)µ(B)> 0,k ≥ 1

}
.

We say that the process is continued fraction mixing (cf-mixing) if ϑ(1)<∞ and ϑ(n)→ 0

as n →∞.

Theorem 3.7.7. [AN03, theorem 1.1] Let (X1, X2, . . .) be a non-negative, ergodic stationary
process with L(t) = µ(min{X , t}), and set ε(t) := t(logL)′(t). Suppose that the process is
continued fraction mixing with exponential rate and that

∞∑
n=1

ε2(n)
n

<∞.

Then {Xn} has trimmed convergence.

As remarked in [AN03], any Gibbs-Markov map is CF-mixing with exponential rate

(corollary 4.7.8 from [Aar97]). Here by exponential rate we mean that there exist con-

stants c1 ≥ 0 and θ ∈ (0,1) such that ϑ(n)≤ cθn for all n ≥ 1. For our particular sequence,

the series in the previous theorem can be explicitly expressed in terms of the sequences

{pn} and {rn}:

Lemma 3.7.8. Suppose that

∞∑
n=1

(log rn)2(p2
n +2pn pn+1)<∞.

Then the sequence
{
gn =− log r1 ◦Tn−1} has trimmed convergence.
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Proof. We show that if

∞∑
n=1

(log rn)2(p2
n +2pn pn+1)<∞,

then

∞∑
n=1

ε2(n)
n

<∞.

Let F (t)=µ(X ≥ t) and note that

(logL)′(t)= F (t)
L2(t)

,

and hence

∞∑
n=1

ε2(n)
n

=
∞∑

n=1

nF 2(n)
L4(n)

≤ c
∞∑

n=1
nF 2(n),

since L(n) is bounded away from zero. We compare the above sum to the corresponding in-

tegral. We can then see that if x ∈ [0,− log r1) then F (x)= 1, while if x ∈ [− log rn,− log rn+1)

for n ≥ 1 then

F (x)=
∞∑

k=n+1
pk,

so then the integral is

∫ ∞

0
x (F (x))2dx =

∫ − log r1

0
x

( ∞∑
k=1

pk

)2

dx+
∞∑

n=1

(∫ − log rn+1

− log rn

x

( ∞∑
k=n

pk

)2

dx

)

= (log r1)2

2
+ 1

2

∞∑
n=1

(∫ − log rn+1

− log rn

x

( ∞∑
i, j=n

pi p j

)
dx

)

= (log r1)2

2
+ 1

2

∞∑
n=1

(
(log rn−1)2 − (log rn)2)( ∞∑

i, j=n
pi p j

)
.

Call now

an = (log rn)2 , bn =
∞∑

i, j=n
pi p j.

Then, the above expression has the form

∞∑
n=1

(an+1 −an)bn
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which can be written as

−a1b1 +
∞∑

n=1
an+1(bn −bn+1).

Note that

bn+1 −bn = 2pn pn+1 + p2
n

b1 = 1.

With this, the integral becomes∫ ∞

0
x (F (x))2dx = (log r1)2

2
+ 1

2

(
−(log r1)2 +

∞∑
n=1

(log rn)2(p2
n +2pn pn+1)

)

=
∞∑

n=1
(log rn)2(p2

n +2pn pn+1)

as we wanted to prove. �

We show now that the trimmed convergence condition is satisfied by systems for which

{rn} decays polynomially or slower.

Lemma 3.7.9. Suppose that

lim
n→∞

1
n

(log rn)2 = c ∈ [0,∞).

Then the sequence {gn =− log r1 ◦Tn−1} has trimmed convergence.

Proof. Since pn and pn+1 are comparable (as the measure is of controlled decay), it

suffices to prove that
∞∑

n=1
(log rn)2 p2

n <∞.

Note that {pn}⊂ `2 and we have that

1=
( ∞∑

n=1
pn

)2

=
∞∑

i, j=1
pi p j.

Since the sequence {pn} is decreasing, we have that

∞∑
j=2

p2
j ( j−1)=

∞∑
j=2

p j

j−1∑
i=1

p j ≤
∞∑
j=2

p j

j−1∑
i=1

pi ≤
∞∑
j=2

p j

∞∑
i=1

pi <∞.

Comparing in the limit the series of the left hand side to the series
∑

n p2
n(log rn)2, we get

that this series converges. �
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Corollary 3.7.10. If T is a Gauss-like map and µ is a measure with infinite entropy and
controlled decay, then the sequence gn =− log r1 ◦Tn−1 has trimmed convergence.

Now we are in position to prove theorem 3.7.2:

Proof of theorem 3.7.2 By Theorem 3.7.7 there exists a sequence {bn} such that

lim
n→∞

S̃n(x)
bn

= 1 a.e..

Now, by Theorem 3.7.4 we also have that

limsup
n→∞

Sn(x)
bn

=∞ a.e.

or

liminf
n→∞

Sn(x)
bn

= 0 a.e..

Since the trimmed sum is Ω(bn), the first condition must hold in a set of full measure.

Let (an) be the coding sequence of x. With an argument analogous to the one used in the

proof of Theorem 3.5.2, the limit in question is equivalent to

limsup
n→∞

∑n
k=1 log rak∑n−1
k=1 log rak

= 1+ limsup
n→∞

log ran

log(ra1 . . . rakn−1
)
= 1+ limsup

n→∞
gn(x)

Sn−1(x)

Given 1> ε> 0, there exists n0 such that∣∣∣∣ S̃n(x)
bn

−1
∣∣∣∣< ε

for every n ≥ n0 at x. Since limsup Sn
bn

=∞, given an integer M > 0 there exists n1 ≥ n0

such that

Sn1(x)
bn1

> 2M+1

at x. Combining these two inequalities, we obtain∣∣∣∣max{g1 . . . , gn1}(x)
bn1

∣∣∣∣= ∣∣∣∣Sn1(x)
bn1

− S̃n1(x)
bn1

∣∣∣∣> 2M.

Now, there exists an index j ∈ {1, . . . ,n1} such that g j = max{g1 . . . , gn1} at x, and so

S̃ j(x)= S j−1(x). Since the g i are positive, we have that

S j−1(x)= S̃ j(x)≤ S̃n1(x)< bn1(1+ε)< 2bn1 <
max{g1 . . . , gn1}(x)

M
= g j(x)

M
,
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and hence

M < g j(x)
S j−1(x)

.

This implies that

limsup
n→∞

gn(x)
Sn−1(x)

=∞

and so

limsup
n→∞

log |In|
log |In−1|

=∞

as we wanted to prove. �

3.8 Upper bound for dimHµ

With the tools developed in the previous sections, we proceed with the dimension compu-

tations.

Now we prove an upper bound for dimH µ. This bound is related to the tail decay ratio ŝ.

We prove two necessary lemmas to give the desired bound. The first lemma shows that

{pn} decays slower than any polynomial, while the second lemma, shows the existence of

ŝ and that ŝ = 0 for Gauss-like maps.

Lemma 3.8.1. Suppose that the decay ratio exists and it is equal to s, the sequence {rn}

decays polynomially and the measure µ has infinite entropy. Then for all δ> 0, there exist
constants C,n0 such that

pn ≥ C
n1+δ

for all n ≥ n0.

Proof. Let α> 0 be the polynomial decay of rn. Then by proposition 3.6.2, s = s∞ = 1/α,

we can take ε> 0 small enough so that εα+εs+ε2 < δ. Then there exists C > 0 and n0 ∈N
such that

C
nα+ε

≤ rn

log rs+ε
n ≤ log pn

for all n ≥ n0. This implies that

Cs+ε

n1+δ ≤ Cs+ε

n(α+ε)(s+ε) ≤ pn

for all n ≥ n0 as we wanted. �
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Lemma 3.8.2. Under the same assumptions of the previous lemma, the tails decay ratio
ŝ (definition 3.3.4) exists and is equal to zero.

Proof. By the lemma above, for δ> 0, there are constants C,n0 such that

pn ≥ C
n1+δ

for all n ≥ n0. This implies that

∞∑
m=n

pm ≥ C
δnδ

for n ≥ n0. On the other hand, if we take ε<α−1, there exists n1 such that

rn ≤ C
nα−ε

for n ≥ n1 and consequently,

∞∑
m=n

rm ≤ C
(α−ε−1)nα−ε−1

for n ≥ n1. Hence

log
∑∞

m=n pm

log
∑∞

m=n rm
≤ logC− logδ−δ logn

logC− log(α−ε−1)− (α−ε−1)logn

for n ≥max{n0,n1}. This implies that

limsup
n→∞

log
∑∞

m=n pm

log
∑∞

m=n rm
≤ δ

(α−ε−1)
.

Letting δ→ 0 we conclude the result. �

Now we can compute the lower local dimension, and consequently, obtain the Hausdorff

dimension of the measure.

Theorem 3.8.3. Suppose T is a Gauss-like map and µ is an infinite entropy Gibbs
measure with controlled decay. Then

liminf
r→0

logµ(B(x, r))
log r

= 0

for µ almost every x ∈ I.
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x

... In ...I`nI2`
n

B(x, rn)

Figure 3.2: Relative position of intervals and ball.

Proof. Let x be a point where Theorems 3.5.2, 3.7.2 and 3.7.4 hold (such a set is of full

measure). Given such x and n ∈N, take

tn =
∣∣∣∣ ∞⋃
m=0

Im·`
n (x)

∣∣∣∣ ,

where Im·`
n (x) = I(a1(x), . . . ,an−1(x),an(x)+m). In figure 3.2 we show the intervals con-

tained in the ball B(x, tn).

Then
∞⋃

m=0
Im·`

n (x)⊆ B(x, tn)

and so

logµ(B(x, tn))
log tn

≤ logµ
(⋃∞

m=0 Im·`
n (x)

)
log

∣∣⋃∞
m=0 Im·`

n (x)
∣∣ .

Note now that the above inequality can be expressed in terms of the sequences {pn}, {rn}

using Lemma 3.5.1

logµ
( ∞⋃

m=0
Im·`

n (x)
)
≥

n−1∑
k=1

log pak + log

( ∞∑
m=0

pan+m

)
−nG1 −G2

log
∣∣∣∣ ∞⋃
m=0

Im·`
n (x)

∣∣∣∣≤ n−1∑
k=1

log rak + log

( ∞∑
m=0

ran+m

)
+nD1 +D2

where G1,G2 are constants arising from the Gibbs property and the finite first variation

of the potential, and D1,D2 are constants arising from the bounded distortion property.

Thus, we have

logµ(B(x, tn))
log tn

≤
∑n−1

k=1 log pak + log
(∑∞

m=0 pan+m
)−nG1 −G2∑n−1

k=1 log rak + log
(∑∞

m=0 ran+m
)+nD1 +D2

.

For ε> 0 and n large enough, we have that

− log
∑∞

m=0 pn+m

− log
∑∞

m=0 rn+m
< ε
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and

−ε+ s < −∑n−1
k=1 log pak

−∑n−1
k=1 log rak

< s+ε.

Thus, if an is large enough, we have

logµ(B(x, tn))
log tn

≤ (s+ε)(∑n−1
k=1 log rak

)+ε log
(∑∞

m=0 ran+m
)−nG1 −G2∑n−1

k=1 log rak + log
(∑∞

m=0 ran+m
)+nD1 +D2

.

If α> 1 is the polynomial decaying ratio of {rn}, then by Lemma 3.6.4 we get that the tail

decay asymptotic of
∑∞

m=0 rn+m is α−1. We can then rewrite the above inequality as

logµ(B(x, tn))
log tn

≤ (s+ε)(∑n−1
k=1 log rak

)+εK(α−1)log
(
ran

)−nG1 −G2∑n−1
k=1 log rak +K(α−1)log

(
ran

)+nD1 +D2
.

where K is the constant implied in the tail asymptotic for {rn}. By Theorem 3.7.4 and

Theorem 3.7.2, we can take an increasing subsequence ank so that

lim
k→∞

− log rank

−∑nk−1
k=1 log rak

=∞,

lim
k→∞

− 1
nk

log rank
=∞.

We get then

lim
k→∞

logµ(B(x, tnk ))
log tnk

≤ ε.

Letting ε→ 0 we conclude that d(x)≤ ŝ as we wanted. �

From the above result and proposition 2.3.7, we can conclude that for such measures,

dimH µ= 0.

3.9 Computation of dimpµ

In the previous section we completely determined the Hausdorff dimension of the mea-

sures of our interest. Now we proceed to compute the packing dimension. First we give a

lower bound for the upper local dimension. The proof uses similar ideas to the proof of

Theorem 3.8.3: we choose a particular cover of the ball and use that the Birkhoff sums

for the potentials − log pa1 ,− log ra1 grow faster than linear.
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Proposition 3.9.1. Suppose T is a Gauss-like map and µ is an infinite entropy Gibbs
measure with controlled decay. Then

limsup
r→0

logµ(B(x, r))
log r

≥ s

for µ almost every x ∈ I.

Proof. By Birkhoff ’s Ergodic Theorem, we have that

lim
n→∞

fn,1

n
= p1

almost everywhere, where fn,k is as defined in the proof of 3.5.2. Lemma 3.4.3 and

Theorem 3.5.2 hold in a set of full measure as well. We pick a point x where the three

results hold. Since p1 < 1, we can pick a subsequence kn ↗∞ such that akn 6= 1 for every

n. Then, for all n, take tn =min{|Ikn |, |Ir
kn
|, |I`kn

|}= |I`kn
|.

x
...

IknI`kn

B(x, rn)

Ir
kn ...

Figure 3.3: Relative position of the intervals and ball.

Here we denote I`n = I(a1, . . . ,an−1,an+1) and Ir
n = I(a1, . . . ,an−1,an−1) whenever an > 1.

This choice of rn implies that B(x, tn)⊆ I`kn
∪Ikn∪Ir

kn
. In figure 3.3 we show this inclusion.

From the Gibbs property and the fact that ϕ(xn),ϕ(xn+1), and rn, rn+1 are comparable,

it follows that there are constants C1,C2 > 0 such that µ(I`n ∪ In ∪ Ir
n) ≤ C1µ(In) and

|I`n| ≥ C2|In| for every n. Using this and Lemma 3.5.1 we have that

logµ(B(x, tn))
log rn

≥ log(C1µ(Ikn))
log(C2|Ikn |)

≥ logC1 +knG1 +G2 +∑kn
i=1 log pai

logC2 −D2 −kn logD1 +∑kn
i=1 log rai

.

By Lemma 3.4.3 and Theorem 3.5.2, the last expression converges to s, as desired. �

Giving an upper bound for the upper local dimension requires a more involved analysis

of the geometric structure of the partition and its relation to the geometry of the balls.

We will need the following lemma:
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Lemma 3.9.2. Suppose that {rn} decays polynomially with degree α> 1. Then, for every
0< δ<min{1/3, (α−1)/(α+1)}, 0< η< 1/2 there exists k0 ∈N such that

log
∑n+k

m=k pm

log
∑n+k+1

m=k−1 rm
≤ 1+δ
α−δ +η

for all k ≥ k0 and n ∈N.

Proof. Recall that for such sequence {rn}, we have that s = 1/α. Fix 0< δ<min{1/3, s(α−
1)/(α+1)}, 0< η< 1/2. Note that this implies that

δ

α−1−δ < s = 1
α
< 1+δ
α−δ .

Now, since

lim
k→∞

(1+δ) log2+δ logk
log(α−1−δ)+ (α−1−δ) log(k−2)

= δ

α−1−δ < 1+δ
α−δ

and

lim
k→∞

(1+δ) log(2k)
(α−δ) log(k−1)− log3

= 1+δ
α−δ ,

we can find k0 ∈N such that

(1+δ) log2+δ logk
log(α−1−δ)+ (α−1−δ) log(k−2)

< 1+δ
α−δ +η

(1+δ) log(2k)
(α−δ) log(k−1)− log3

< 1+δ
α−δ +η

for all k ≥ k0. It can be proved using calculus that for δ< (α−1)/2, the inequality

(1+δ) log(2k)≤ (α−δ) log(k−1)− log3

holds for sufficiently large k, so we can take k0 large enough so that this holds. Finally,

we can take k0 large enough so that we also have

rk ≤
1

kα−δ
1

k1+δ ≤ pk

for all k ≥ k0. Let n ∈N. We divide in two cases:

Case 1: n ≥ k. Then

n+k∑
m=k

pm ≥ n
(2k)1+δ ≥ 1

21+δkδ
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and

n+k+1∑
k−1

rm ≤
n+k+1∑
m=k−1

1
mα−δ ≤

∞∑
m=k−1

1
mα−δ ≤ 1

α−1−δ
(

1
(k−2)α−1−δ

)
for all k ≥ k0. Then

log
∑n+k

m=k pm

log
∑n+k+1

m=k−1 rm
≤ (1+δ) log2+δ logk

log(α−1−δ)+ (α−1−δ) log(k−2)
≤ 1+δ
α−δ +η

for all k ≥ k0.

Case 2: n < k. Then

n+k∑
m=k

pm ≥ n+1
(2k)1+δ

and

n+k+1∑
k−1

rm ≤
n+k+1∑
m=k−1

1
mα−δ ≤ n+3

(k−1)α−δ
≤ 3

(n+1)
(k−1)α−δ

.

Hence

log
∑n+k

m=k pm

log
∑n+k+1

m=k−1 rm
≤ (1+δ) log(2k)− log(n+1)

(α−δ) log(k−1)− log3− log(n+1)
.

We use the following Lemma:

Lemma 3.9.3. For a,b, c > 0 such that a− c,b− c > 0, we have that

a− c
b− c

≤ a
b

if and only if b ≥ a.

We can use this with a = (1+δ) log(2k), b = (α−δ) log(k−1)− log3 and c = log(n+1). This

implies that

log
∑n+k

m=k pm

log
∑n+k+1

m=k−1 rm
≤ (1+δ) log(2k)

(α−δ) log(k−1)− log3
≤ 1+δ
α−δ +η.

for all k ≥ k0, as we wanted to prove. �

With the previous lemma, we can now prove the upper bound for the upper local dimen-

sion. The proof is based on carefully choosing the covers of the balls; such covers must be

fine enough so they are not affected by Theorem 3.7.2. This means that we want to cover

the ball with cylinders of the same scale, otherwise, the cover would yield trivial bounds.
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Proposition 3.9.4. Suppose T is a Gauss-like map and µ is an infinite entropy Gibbs
measure with controlled decay. Then

limsup
r→0

logµ(B(x, r))
log r

≤ s

for µ almost every x ∈ I.

Proof. Let x be a point where Theorem 3.5.2 and Lemma 3.4.3 applied to f =− log ra1

hold. Given r > 0, there exists a unique natural number n = n(r) such that

|In(x)| < r ≤ |In−1(x)|.

Note that n →∞ as r → 0. Let δ> 0 and η as in Lemma 3.9.2. Then there exists k0 ∈N
such that

log
∑n+k

m=k pm

log
∑n+k+1

m=k−1 rm
≤ 1+δ
α−δ +η

for all k ≥ k0. Recall that by Im·r
n (x) we denote the cylinder I(a1, . . . ,an−1,an −m), where

(an) is the sequence coding x and m < an. We separate the proof in two cases:

Case 1:

In = I(a1, . . . ,an−1,k0)⊂ B(x, r).

x

... InI(an−k0)·`
n

B(x, rn)

......

Figure 3.4: Case 1

This case is shown in figure 3.4. In this case, using Lemma 3.5.1 we have that

log(µ(B(x, r)))≥ log(µ(I(a1, . . . ,an−1,k0)))

≥
n−1∑
k=1

log pak + log pk0 −nG1 −G2.

We get then

logµ(B(x, r))
log r

≤
∑n−1

k=1 log pak + log pk0 −nG1 −G2∑n−1
k=1 log rak +nD1 +D2

≤ (s+δ)
∑n−1

k=1 log rak + log pk0 −nG1 −G2∑n−1
k=1 log rak +nD1 +D2

.(3.3)
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Case 2:

I(a1, . . . ,an−1,k0) 6⊂ B(x, r).

x...

InIk1·`
n

B(x, rn)

...
...I(k1−1)·`

n

Figure 3.5: Case 2

This implies that there exists k1 ∈N such that

k1−1⋃
m=1

Ik·`
n (x)⊂ B(x, r),∣∣∣∣∣ k1⋃

m=0
Ik·`

n (x)

∣∣∣∣∣> r

as shown in figure 3.5, and consequently

log(µ(B(x, r)))≥
n−1∑
k=1

log pak + log

(
k1−1∑
k=1

pan−k

)
−nG1 −G2

log r ≤
n−1∑
k=1

log rak + log

(
k1∑

k=0
ran−k

)
+nD1 +D2.

We obtain then

log(µ(B(x, r)))
log r

≤
∑n−1

k=1 log pak + log
(∑k1−1

k=1 pan−k

)
−nG1 −G2∑n−1

k=1 log rak + log
(∑k1

k=0 ran−k

)
+nD1 +D2

.

Using inequality (3.9.2)

log(µ(B(x, r)))
log r

≤
∑n−1

k=1 log pak +
( 1+δ
α−δ +η

)
log

(∑k1
k=0 ran−k

)
−nG1 −G2∑n−1

k=1 log rak + log
(∑k1

k=0 ran−k

)
+nD1 +D2

.

For δ> 0, there exist n0 ∈N such that

−∑n−1
k=1 log qak

−∑n−1
k=1 log rak

< s+δ
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for all n ≥ n0. We obtain

log(µ(B(x, r)))
log r

≤
(s+δ)

∑n−1
k=1 log rak +

( 1+δ
α−δ +η

)
log

(∑k1
k=0 ran−k

)
−nG1 −G2∑n−1

k=1 log rak + log
(∑k1

k=0 ran−k

)
+nD1 +D2

≤max
{

(s+δ),
(

1+δ
α−δ +η

)}
·
∑n−1

k=1 log rak + log
(∑k1

k=0 ran−k

)
−nG1 −G2∑n−1

k=1 log rak + log
(∑k1

k=0 ran−k

)
+nD1 +D2

.(3.4)

By Lemma 3.4.3 we have that the right hand side of (3.3) and (3.4) converge to

(s+δ) , max
{

(s+δ),
(

1+δ
α−δ +η

)}
respectively. We conclude that

limsup
r→0

log(µ(B(x, r)))
log r

≤max
{

(s+δ),
(

1+δ
α−δ +η

)}
.

Letting δ→ 0 and η→ 0, we obtain the desired result. �

Corollary 3.9.5. For an infinite entropy Gibbs measure µ with infinite entropy and
controlled decacy, associated to a Gauss-like map, we have that 0 = d(x) < s = d(x) for
almost every point, and hence µ is not exact dimensional.

Proof of theorem 3.1.2 The previous corollary gives us the almost sure behavior of

the local dimensions, and hence, we have obtained values for both the packing and the

Hausdorff dimension. �

3.10 A measure with positive dimension

In this section we construct an EMR map T and a measure µ with infinite entropy and

positive Hausdorff dimension. For a sequence {rn}⊂R+, such that
∑

n rn = 1, consider the

partition of the unit interval [0,1] given by I(n)= [bn+1,bn], where

b1 = 1,

bn = 1−
n−1∑
k=1

rk for n ≥ 2.

By construction, the diameter of each interval is |I(n)| = rn. Define the map T by

T(x)= (bn −bn+1)−1x−bn+1 · (bn −bn+1)−1 for x ∈ I(n).
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Thus, T restricted to each interval I(n) is a linear bijection to [0,1]. Since the map T is

piecewise linear, it is easy to prove that

|I(a1, . . . ,an)| = ra1 · . . . · ran .

for every finite sequence (a1, . . . ,an) ∈Nn. For the measure, we take the Bernoulli measure

µ constructed by assigning measure{pn} to the cylinders I(n) in the following way:

1. s1 = log p1

log r1
= 1,

2. pn = K1

(n+1)(log(n+1))2 , for all n ≥ 3,

3. rn = K2

(n+1)(log(n+1))3/2 , for all n ≥ 3.

Here K1,K2 are constants that ensure that the first condition holds as well as
∑

n pn =∑
n rn = 1, and their values are K1 ≈ 0.52 and K2 ≈ 0.48. We can modify the value of p2

and r2 if it is necessary in order for the conditions above to hold. It is easy to see that

there is a constant C ∈ (0,1) such that

0< C ≤ pn+1

pn
,
rn+1

rn
≤ 1

for all n ≥ 1, and that pn ≤ rn for all n ≥ 3.

Observe that for our map and measure (T,µ), the value of the decay ratio is s = 1. The

following lemma proves that almost every point does not have long sequences of digits

equal to 1. This implies that the orbits of the typical points do not spend much time near

the right end of the unit interval. The proof is an easy application of the Borel-Cantelli

lemma:

Lemma 3.10.1. For µ-almost every x ∈ I, Tn(x) ∈ An := I(1, . . . ,1) (where the cylinder
consists of n−1 consecutive 1’s) for finitely many indices n ≥ 2. In particular, there exists
n0 = n0(x) such that for every n ≥ n0, there is k ∈ {bn/2c, . . . ,n−1} such that ak 6= 1.

Proof. Let Bn = T−n An, and note that µ(Bn)= µ(An)= pn−1
1 , where p1 = µ(I(1)). Since

p1 ∈ (0,1), we have that
∑

nµ(Bn) < ∞. By the Borel-Cantelli lemma, µ({x ∈ I | x ∈
Bn i.o.})= 0, proving the result. �

The next lemma shows that the decay ratio not only gives the asymptotic logarithmic

comparison between the measure and the diameter of the cylinder I(n), but also of blocks

of neighboring cylinders of the form I(n)∪ I(n+1)∪ . . .∪ I(n+m):
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Lemma 3.10.2. For every ε> 0, there exists n0 = n0(ε) such that

log
∑n+m+2

k=n pk

log
∑n+m

k=n rk
≥ 1−ε

for all n ≥ n0 and m ≥ 0 (including when m =∞).

Proof. Fix ε> 0 and define n0 =max{3,n1}, where n1 is given by

n1 =min

n :
log3

− log
(

K2/2
(log(n+1))1/2

) ≤ ε
 .

Then, for n ≥ n0 and m ≥ 0 we have

log
n+m∑
k=n

rk ≤ log
∞∑

k=n
rk ≤ log

(
K2/2

(log(n+1))1/2

)
≤ log3

ε

since n ≥ n1 and

log
∑n+m

k=n pk

log
∑n+m

k=n rk
≥ 1

since n ≥ 3. This implies that

log
∑n+m+2

k=n pk

log
∑n+m

k=n rk
≥ log

(
3

∑n+m
k=n pk

)
log

∑n+m
k=n rk

= log3
log

∑n+m
k=n rk

+ log
∑n+m

k=n pk

log
∑n+m

k=n rk
≥ 1−ε

for all n ≥ n0 and m ≥ 0 as we wanted to prove. �

Note that as a consequence of the previous lemma, we have that ŝ = 1 for our system. We

proceed to prove the main result:

Proposition 3.10.3. Let T be the unique orientation preserving piecewise linear map
defined by the sequence {rn}, and µ be the unique Bernoulli measure defined by the
sequence {pn}. Then d(x)= 1 for µ-almost every point. In particular, µ is exact dimensional
and dimH µ= dimpµ= 1.

Proof. Let x be a point where Theorem 3.5.2 and lemma 3.10.1 hold, 1> r > 0 and ε> 0.

We write (a1,a2, . . .) for the sequence coding x. Then, there exists n = n(x, r) such that

|In(x)| < Cr ≤ |In−1(x)|.
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This implies that r ≤ C−1|In−1(x)| = C−1 ∏n−1
k=1 pak ≤ pan−1+1

∏n−2
k=1 pak = I(a1, . . . ,an−2,an−1+

1).

We need to find a suitable cover of B(x, r). We start by proving a few reductions; these

rule out the cases when the radius of the ball is of a similar scale as |In|.
Reduction 1: we can assume an > 1. Suppose an = 1. By lemma 3.10.1, if r is small

enough, we have that there exists k = k(x,n) ∈ {bn/2c, . . . ,n−1} such that ak 6= 1, and

define k̂ = sup{k ∈ {1, . . . ,n−1} | ak 6= 1}. Then we have

B(x, r)⊂ I(a1, . . . ,an−2,an−1)∪ I(a1, . . . ,an−2,an−1 +1)∪ I(a1, . . . ,ak̂ −1).

Since the first two cylinders are strictly to the left of the third one and correspond to

strictly smaller scales, we can bound the measure of the ball by

µ(B(x, r))≤ 3µ(I(a1, . . . ,ak̂ −1)).

Noting that for all k ∈ {k̂+1, . . . ,n}, ak = 1 and that k̂ ≥ bn/2c, we have that

logµ(B(x, r))
log r

≥ log3+ logC−1 +∑k̂
k=1 log pak∑k̂

k=1 log rak + k̂ log r1

.

Reduction 2: we can assume

I(a1, . . . ,an−1,1) 6⊂ B(x, r).

Otherwise, we have that r ≥ |I(a1, . . . ,an−1,1)|, and giving the same argument as in the

previous reduction, we obtain the bound

logµ(B(x, r))
log r

≥ log3+ logC−1 +∑k̂
k=1 log pak∑k̂

k=1 log rak + (k̂+1)log r1

where k̂ is defined in the same way as in the previous reduction.

Reduction 3: we can assume

I(a1, . . . ,an−1 +1,1) 6⊂ B(x, r).

Otherwise, we can bound the radius of the ball by r > |I(a1, . . . ,an−1 +1,1)| and conse-

quently obtain the bound

logµ(B(x, r))
log r

≥ log3+ logC−1 +∑k̂
k=1 log pak

logC+∑k̂
k=1 log rak + (k̂+1)log r1
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where k̂ is chosen in the same way as in reduction 1.

Reduction 4: we can assume

I(a1, . . . ,an−1 +1,k0) 6⊂ B(x, r),

where k0 = k0(ε) is the constant n0(ε) as in lemma 3.10.2. Similarly as in the previous

reduction, if that was not the case we have the bound

logµ(B(x, r))
log r

≥ log3+ logC−1 +∑k̂
k=1 log pak

logC+∑k̂
k=1 log rak + k̂ log r1 + log rk0

.

The three first reductions imply that we can assume

B(x, r)⊂ I(a1, . . . ,an−1)∪ I(a1, . . . ,an−1 +1).

We divide now in cases, according on where does the left end of the ball falls. Denote by

∂`(I(a1, . . . ,an)),∂r(I(a1, . . . ,an)) the left and right endpoints of the cylinder I(a1, . . . ,an)

respectively.

Case 1: x− r > ∂`(I(a1, . . . ,an)).

This implies there exist an > m,m′ ≥ 0 such that

∂`(I(a1, . . . ,an −m))< x+ r ≤ ∂r(I(a1, . . . ,an −m))

∂`(I(a1, . . . ,an +m′))≤ x− r < ∂r(I(a1, . . . ,an +m′)).

By the reduction 4 we can assume an −m > k0. We can now cover then the ball by

B(x, r)⊂
an+m′⋃

k=an−m
I(a1, . . . ,an−2,an−1,k)

and bound the radius by

r > 1
2

∣∣∣∣∣ an+m′−1⋃
k=an−m+1

I(a1, . . . ,an−2,an−1,k)

∣∣∣∣∣ .

We obtain the bound

logµ(B(x, r))
log r

≥
∑n−1

k=1 log pak + log
∑an+m′

k=an−m pk∑n−1
k=1 log rak + log

∑an+m−1′
k=an−m+1 rk − log2

≥
∑n−1

k=1 log pak + log
∑an+m′

k=an−m pk∑n−1
k=1 log rak + log

∑an+m−2′
k=an−m rk + logC− log2

≥ (1−ε)
∑n−1

k=1 log pak + log
∑an+m′−2

k=an−m rk∑n−1
k=1 log rak + log

∑an+m′−2
k=an−m rk + logC− log2
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Case 2: x− r = ∂`(I(a1, . . . ,an))

This is the limit of the previous case. In this case there exists m < an such that

∂`(I(a1, . . . ,an −m))< x+ r ≤ ∂r(I(a1, . . . ,an −m)).

Again, we can assume an −m > k0. Thus, we can cover the ball by

B(x, r)⊂
∞⋃

k=an−m
I(a1, . . . ,an−2,an−1,k)

and bound the radius of the ball by

r > 1
2

∣∣∣∣∣ ∞⋃
k=an−m+1

I(a1, . . . ,an−2,an−1,k)

∣∣∣∣∣ .

By using lemma 3.10.2 we obtain the bound

logµ(B(x, r))
log r

≥
∑n−1

k=1 log pak + log
∑∞

k=an−m pk∑n−1
k=1 log rak + log

∑∞
k=an−m rk + logC− log2

≥ (1−ε)
∑n−1

k=1 log pak + log
∑∞

k=an−m rk∑n−1
k=1 log rak + log

∑∞
k=an−m rk + logC− log2

Case 3: x− r < ∂`(I(a1, . . . ,an)). In this case, there exist m < an−k0 and m′ > 0 such that

∂r(I(a1, . . . ,an −m))< x+ r ≤ ∂r(I(a1, . . . ,an −m))

∂`(I(a1, . . . ,an−1 +1,1, . . . ,1︸ ︷︷ ︸
m′+1

))> x− r ≥ ∂`(I(a1, . . . ,an−1 +1,1, . . . ,1︸ ︷︷ ︸
m′

)).

This can be interpreted as finding the shortest sequence of ones such that the ball

contains the cylinder I(a1, . . . ,an−1+1,1, . . . ,1), where the sequence of ones if of length

m′+1. This implies we can cover the ball by

B(x, r)⊂
∞⋃

k=an−m
I(a1, . . . ,an−2,an−1,k)∪ I(a1, . . . ,an−1 +1,1, . . . ,1︸ ︷︷ ︸

m′

)

and we can estimate the radius by

r > 1
2

∣∣∣∣∣ ∞⋃
k=an−m+1

I(a1, . . . ,an−2,an−1,k)

∣∣∣∣∣+ 1
2
|I(a1, . . . ,an−1 +1,1, . . . ,1︸ ︷︷ ︸

m+1

)|.
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With this, we obtain the bound

logµ(B(x, r))
log r

≥
∑n−1

k=1 log pak + log
(
Cpm′

1 +∑∞
k=an−m pk

)
∑n−1

k=1 log rak + log
(
Crm′+1

1 +∑∞
k=an−m rk

)
+ logC− log2

≥
∑n−1

k=1 log pak + log
(
Crs1m′

1 +
(∑∞

k=an−m rk

)ŝ−ε)
∑n−1

k=1 log rak + log
(
Crm′+1

1 +∑∞
k=an−m rk

)
+ logC− log2

≥
∑n−1

k=1 log pak +min{s1, ŝ−ε} log
(
Crm′

1 +∑∞
k=an−m rk

)
∑n−1

k=1 log rak + log
(
Crm′+1

1 +∑∞
k=an−m rk

)
+ logC− log2

We finish the proof by observing that in all reductions and cases we have a lower bound

for log(µ(B(x, r)))/ log r in terms of a fraction having numerators and denominators of

comparable growth, up to multiplicative coefficients. Since such bound must hold for all

choices of r, we obtain that

liminf
r→∞

logµ(B(x, r))
log r

≥ 1−ε

for almost every x, from where we obtain the result. �

3.11 Final remarks of the chapter

Theorem 3.8.3 implies that for maps such that {rn} decays polynomially, the Hausdorff

dimension of ergodic invariant measures with infinite entropy is equal to zero under

mild independence and regularity assumptions on the measure.

Question 1. Is there an ergodic invariant measure µ for a Gauss-like map with hµ =
λµ =∞, and dimH µ> 0?

We believe that the infinite entropy condition and the polynomial decay of the size of the

partition forces the Hausdorff dimension to drop to zero. The example from the previous

section shows that this might not be the case when rn does not decay polynomially fast.

We also formulate two questions for a more general case:

Question 2. What can be said about the almost sure value of the symbolic dimension
when µ is only assumed to be ergodic?

Question 3. What can be said about dimH µ when µ is only assumed to be ergodic?
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The main difficulty with questions 2 and 3 is that our methods rely on the asymptotic

independence of the digits in the symbolic space. This implies that we can write the

measure and diameter of cylinders in the form of Birkhoff sums, allowing us to use

ergodic theoretic methods to study the almost sure behavior of such sums. For measures

which do not satisfy any kind of independence assumption, we are not able to use such

techniques. Based on these remarks, we finish the chapter with the following conjecture:

Conjecture 1. For the Gauss map, there are no invariant ergodic probability measures
with infinite entropy and positive Hausdorff dimension.
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4
LIMIT LAWS FOR SEQUENTIAL AND RANDOM

DYNAMICAL SYSTEMS

4.1 Introduction

In the previous chapter we studied asymptotic properties of iterations of a single map

and their associated invariant probability measures. In this chapter, we focus on a

problem where we consider compositions of possibly different maps, belonging to a

common family. We study a particular family of non-uniformly hyperbolic maps and

their limit laws with respect to a reference measure (Lebesgue). In particular, we are

interested in studying large deviations and central limit theorems for both deterministic

and random compositions of such maps. The complications are twofold: on one hand, the

lack of uniform hyperbolicity of the maps makes the traditional methods used to obtain

limit laws (quasi-compactness of the transfer operators) obsolete, as they rely on the

quasi-compactness of the transfer operator on certain spaces, a property which no longer

holds when the maps are not uniformly-hyperbolic. On the other hand, the fact that

there is no common invariant measure for the family makes the time series associated to

a given potential non-stationary. This implies that in order to study the fluctuations of

the Birkhoff sums around their expected value, we must randomly center the sums.

The theory of limit laws and rates of decay of correlations for uniformly hyperbolic and

some non-uniformly hyperbolic sequential and random dynamical systems has recently

seen major progress. For expanding and uniformly hyperbolic maps, the works of Kifer,
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[Kif91] and [Kif92] are foundational. Other results in this area include: in [CR07] strong

laws of large numbers and centered central limit theorems for sequential expanding

maps; in [AHN+15], polynomial decay of correlations for sequential intermittent sys-

tems; in [NTV18], sequential and quenched (self-centering) central limit theorems for

intermittent systems; in [ANV15], annealed versions of a central limit theorem, large

deviations principle, local limit theorem and almost sure invariance principle are proven

for random expanding dynamical systems, as well as quenched versions of a central

limit theorem, dynamical Borel-Cantelli lemmas, Erdős-Rényi laws and concentration

inequalities; in [AA16], necessary and sufficient conditions are given for a central limit

theorem without random centering for uniformly expanding maps; and in [BB16b] mixing

rates and central limit theorems are given for random intermittent maps using a Tower

construction. Recently the preprint [BBR19] considered quenched decay of correlation

for slowly mixing systems and the preprint [AF18] used martingale techniques to obtain

large deviations for systems with stretched exponential decay rates.

More precisely, we consider in the first instance a fixed deterministically chosen se-

quence of maps . . .Tαn , . . . ,Tα1 in the sequential case, or a randomly drawn sequence

. . .Tωn , . . . ,Tω1 with respect to a Bernoulli measure ν on Σ := {T1, . . . ,Tk}N, where each of

the maps T j is a Liverani-Saussol-Vaienti [LSV99] intermittent map of form

Tα j (x)=
x+2α j x1+α j , 0≤ x ≤ 1/2,

2x−1, 1/2≤ x ≤ 1
,

for numbers 0<α j ≤α< 1. In figure 4.1 the graph of Tα is shown for a particular choice

of α.

We consider the asymptotic behavior of the centered (that is, after subtracting their

expectation) sums

Sn :=
n∑

k=1
ϕ◦ (Tαk ◦ · · · ◦Tα1)

Ŝn := Sn −E(Sn)=
n∑

k=1
ϕ◦ (Tαk ◦ · · · ◦Tα1)−

n∑
k=1

m(ϕ◦Tαk ◦ · · · ◦Tα1)

for sufficiently regular observables ϕ. Denote by m Lebesgue measure on X := [0,1],

and by m(ϕ) the integral of ϕ with respect to m. We will also consider the measure m̃
given by dm̃(x)= x−αdm, where 0 <α j ≤α< 1. The motivation for introduction of this

measure is that in the case of a stationary system, if αk =α for each k, then a natural

and convenient measure to use is the invariant measure µα for Tα, which behaves near
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0 1
2

1

1

Figure 4.1: In red, Tα for α= 0.8. In blue, the identity map.

0 as x−α. In the stationary case large deviation estimates are given with respect to µα
and m in [MN08].

In the sequential case of a fixed realization we are interested in the large deviations of

the self-centered sums Ŝn. In particular, we obtain a bound of the form

m
{
x :

∣∣Ŝn
∣∣> nε

}≤ Cα,ϕ,εp(n)−1.

for ε> 0 and n ≥ 1, where Cα,ϕ,ε is a constant and p is a function of polynomial growth.

We also obtain large deviations with respect to m̃, which are in a sense sharper. In the

sequential case centering is clearly necessary.

In the annealed case we consider the random dynamical system (RDS) F : Σ× [0,1] →
Σ× [0,1] given by F(ω, x) = (τω,Tα1 x) for ω = (α1,α2, . . .) ∈ Σ, where τ is the left-shift

operator on Σ. For ν a Bernoulli measure on Σ, we suppose µ is a stationary measure for

the stochastic process on [0,1], that is, a measure such that ν⊗µ is F invariant. This

assumption is valid in the setting we consider. If ϕ is an observable such that µ(ϕ)= 0,

we obtain a bound of the form

ν⊗µ {(ω, x) : |Sn| > nε}≤ Cα,ϕ,εp(n)−1

And similarly, in the quenched case, once again assuming µ(ϕ)= 0, we give bounds for

m {x : |Sn| > nε}≤ Cα,ϕ,εp(n)−1

for ν-almost every realization ω ∈Σ. Note that in both the annealed and quenched case

the centering is only on average; there is no random (sampling) centering.
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Since the maps we are considering are not uniformly hyperbolic, spectral methods used

to obtain limits laws are not immediately available. Our techniques to establish large

deviations estimates are based on those developed for stationary systems, in particular

the martingale methods of [MN08, Mel09].

Using recent work of [AA16] and [HS20] we extend the results of [NTV18] on quenched

central limit theorems (CLT) for centered observables over random compositions of

intermittent maps in two ways, first by enlarging the parameter range over which the

quenched CLT holds and second by showing as a consequence of results in [HS20] that

the variance in the quenched CLT is almost surely constant and equal to the variance of

the annealed CLT.

We also study the necessity of centering to achieve a quenched CLT using ideas of [AA16]

and [ANV15]. The work of [ANV15] together with our observations show that centering

is necessary ‘generically’ (in a sense made precise later) to obtain the quenched CLT in

fairly general hyperbolic situations.

More concretely, we improve some earlier results of [NTV18]. We describe these results

in what follows:

Theorem 4.1.1 ([NTV18]). Let ϕ be a C1([0,1]) function, and assume that

σ2
n := var

(
Ŝn

)= E[
(Sn −E[Sn])2]& nβ.

If

0<α< 1
9

and β> 1
2(1−2α)

,

then

Ŝn

σn
⇒ N(0,1).

The previous result is with respect to the Lebesgue measure. Our improvements to this

theorem are the following:

• we show that the sequential CLT in [NTV18, Theorem 3.1], [HL19], holds for the

sharp α< 1/2 (from α< 1/9) if the variance grows at the rate specified.

• we show that the CLT holds not only with respect to Lebesgue measure m but also

for dm̃ = x−αdm, which scales at the origin as the invariant measure of Tα.

• in the case of quenched CLT’s of [NTV18, Theorem 3.1], using results of Hella and

Stenlund [HS20] we show that the variance σ2
ω is almost-surely the same for any

sequence of maps and equal to the annealed variance σ2.
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4.2 Notation and assumptions

Throughout this chapter, m denotes the Lebesgue measure on X := [0,1] and B the

Borel σ-algebra on [0,1]; by dxe will denote the smallest integer greater or equal to x. We

consider the family of intermittent maps given by

Tα(x)=
x+2αx1+α, 0≤ x ≤ 1/2,

2x−1, 1/2≤ x ≤ 1
,(4.1)

for α ∈ (0,1).

For βk ∈ (0,1) denote by Pβk = Pk : L1(m)→ L1(m) the transfer operator (or Ruelle-Perron-

Frobenius operator) with respect to m associated to the map Tβk = Tk, defined as the

“pre-dual” of the Koopman operator f 7→ f ◦Tk, acting on L∞(m). The duality relation is

given by ∫
X

Pk f g dm =
∫

X
f g ◦Tk dm

for all f ∈ L1(m) and g ∈ L∞(m) [BG97, Proposition 4.2.6]. For a fixed sequence {βk} such

that 0<βk ≤α for all k, define

T ∞ := . . . ,Tβn , . . . ,Tβ1

T n
m :=Tβn ◦ · · · ◦Tβm , T n :=T n

1

P n
m :=Pβn ◦ · · · ◦Pβm , P n :=P n

1

We will often write, for ease of exposition when there is no ambiguity, Tβn ◦ · · · ◦Tβm as

Tn ◦ · · · ◦Tm and Pβn ◦ · · · ◦Pβm as Pn ◦ · · · ◦Pm.

Since L1(m) is invariant under the action of the transfer operators, the duality relation

extends to compositions ∫
X

P n
k f g dm =

∫
X

f g ◦T n
k dm.

We will write Em[ϕ|F ] for the conditional expectation of ϕ on a sub-σ-algebra F with

respect to the measure m. To simplify notation we might write E for Em.

Remark 4.2.1. In [CR07, NTV18] it is shown that

(4.2) Em[ϕ◦T `|T −kB]= Pk ◦ · · · ◦P`+1(ϕ ·P `(1))
P k(1)

◦T k

for 0≤ `≤ k.
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One of the main tools to study sequential and random systems of intermittent maps is

the use of cones (see [LSV99], [AHN+15], [NTV18] ). Define the cone C2 by

C2 := { f ∈ C0((0,1])∩L1(m) | f ≥ 0, f non-increasing , Xα+1 f increasing , f (x)≤ ax−αm( f )},

where X (x)= x is the identity function and m( f ) is the integral of f with respect to m. In

[AHN+15] it is proven that for a fixed value of α ∈ (0,1), provided that the constant a is

big enough, the cone C2 is invariant under the action of all transfer operators Pβ with

0<β≤α.

Notation. In general we will denote the transfer operator with respect to a non-singular1

measure µ (not necessarily Lebesgue measure) by Pµ. Similarly, the (conditional) expecta-
tion will be denoted by Eµ.

Denote the centering with respect to µ of a function ϕ ∈ L1(X ,µ) by

(4.3)
[
ϕ

]µ :=ϕ− 1
µ(X )

∫
X
ϕ dµ

In particular, for g(x) := x−α, denote the measure gm by m̃, the corresponding transfer
operator by P̃ := Pgm, and the (conditional) expectation by Em̃ := Egm.

Random dynamical systems.

Now we introduce a randomized choice of maps: consider a finite family of intermittent

maps of the form (4.1), indexed by a set Ω = {β1, . . . ,βm} ⊂ (0,α). Given a probability

distribution P= (p1, . . . , pm) on Ω, define a Bernoulli measure P⊗N on Σ :=ΩN by P⊗N{ω :

ω j1 = β j1 , . . . ,ω jk = β jk } = ∏k
i=1 p j i for every finite cylinder and extend to the sigma-

algebra generated by the cylinders of Σ by Kolmogorov’s extension theorem. This measure

is invariant and ergodic with respect to the shift operator τ on Σ, τ : Σ→ Σ acting on

sequences by (τ(ω))k =ωk+1. We will denote P⊗N by ν from now on.

For ω= (ω1,ω2, . . .) ∈Σ define T n
ω := T(τnω)1 ◦ · · · ◦Tω1 = Tωn ◦ · · · ◦Tω1 . The random dynam-

ical system is defined as

F :Σ× X →Σ× X

(ω, x) 7→ (
τω,Tω1 x

)
.

The iterates of F are given by Fn(ω, x)= (τn(ω),T n
ω (x)).

1The measure µ is non-singular for the transformation T if µ(A)> 0 =⇒ µ(T(A))> 0.
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We will also use Ω-indexed subscripts for random transfer operators associated to the

maps Tωi , so that Pωi := PTωi
. We will also abuse notation and write Pω for Pω1 if

ω= (ω1,ω2, . . . ,ωn, . . .).

A probability measure µ on X is said to be stationary with respect to the RDS F if

µ(A)=
∫
Σ
µ

(
T−1
ω1

(A)
)
dν(ω)= ∑

β∈Ω
pβµ

(
T−1
β (A)

)
for every measurable set A, where pβ is the P-probability of the symbol β. This is

equivalent to the measure ν⊗µ being invariant under the transformation F : Σ× X →
Σ× X .

See Remark 4.4.3 about the existence and ergodicity of such a stationary measure in our

setting.

The annealed transfer operator P : L1(m)→ L1(m) is defined by averaging over all the

transformations:

P = ∑
β∈Ω

pβPβ =
∫
Σ

Pω dν(ω).

This operator is “pre-dual” to the annealed Koopman operator U : L∞(m) → L∞(m)

defined by

(Uϕ)(x) := ∑
β∈Ω

pβϕ(Tβx)=
∫
Σ
ϕ(Tωx)dν(ω)=

∫
Σ

F(ϕ̃)(ω, x)dν(ω)

where ϕ̃(ω, x) :=ϕ(x). The annealed operators satisfy the duality relationship∫
X

(Uϕ) ·ψ dm =
∫

X
ϕ ·Pψ dm

for all observables ϕ ∈ L∞(m) and ψ ∈ L1(m).

4.3 Background results and the Martingale
approximation

In this section we describe the main technique used to prove some of the limit law results:

the martingale approximation, introduced by Gordin [Gor69]. Since there is no common

invariant measure for the set of maps {Tk}, for a given C1 observable ϕ we center along

the orbit by [
ϕ

]
k (ω, x) :=ϕ(x)−

∫
X
ϕ◦T k

ω dm,
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with T k
ω = Id for k = 0.

This implies that Em(
[
ϕ

]
k ◦T k)= 0 and consequently the centered Birkhoff sums

Ŝn :=
n∑

k=1

[
ϕ

]
k ◦T k,

have zero mean with respect to m. Following [NTV18], define

(4.4) H1 := 0 and Hn ◦T n := Em
(
Ŝn−1|Bn

)
for n ≥ 2

and the (reverse) martingale sequence {Mn} by

M0 := 0 and Ŝn = Mn +Hn+1 ◦T n+1,

where the filtration here is Bn =T −nB. Define ψn ∈ L1(m) by setting

ψn = [
ϕ

]
n +Hn −Hn+1 ◦Tn+1,

then Mn−Mn−1 =ψn ◦T n and we have that E(Mn|Bn+1)= 0. Thus {ψn ◦T n} is a reverse

martingale difference scheme. An explicit expression for Hn is given by

Hn = 1
P n1

[
Pn

([
ϕ

]
n−1 Pn−11

)+PnPn−1
([
ϕ

]
n−2 Pn−21

)+·· ·+PnPn−1 · · ·P1
([
ϕ

]
0 P01

)]
.

(4.5)

Remark 4.3.1. The formulas derived so far with m being the Lebesgue measure actually
hold for any measure µ that is non-singular for the transformations Tβ considered. The
conditional expectations Eµ will be with respect to µ and the transfer operator Pµ will be
with respect to the measure space (X ,µ). In particular the centering will have the form[

ϕ
]

k (ω, x) :=ϕ(x)− 1
µ(X )

∫
X
ϕ◦T k

ω dµ,

but all other equations are the same, with the notational changes just described.

We collect and extend some results from [NTV18] concerning the properties of Hn, as

well as the non-stationary decay of correlations for the sequential system.

We state first a few formulas for changing from a measure m to the measure g(x) dm(x)

with g ∈ L1(m); for simplicity, we denote this new measure as gm when there is no

possibility of confusion.

Lemma 4.3.2 (Change of measure). We state this result only for the situation we need,
but it holds also for any measure µ non-singular with respect to T in place of m the
Lebesgue measure, and instead of g(x)= x−α for any g ∈ L1(µ), g > 0.
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Note that L1(gm)= g−1 ·L1(m), so all formulas below make sense for ϕ in the appropriate
L1-space.

We have:

m(ϕ)= m(Pmϕ)

Pgm(ϕ)= g−1Pm(gϕ)(4.6)

g
[
ϕ

]gm = [
gϕ

]m − m(gϕ)
m(g)

[g]m

Egm(ϕ|B)= Em(gϕ|B)/Em(g|B)

Therefore

(4.7) (P gm)k
`

([
ϕ

]gm)= g−1(Pm)k
`

([
gϕ

]m − m(gϕ)
m(g)

[g]m
)

Proof. The first two properties are standard and follow from the definition of the

transfer operator. The third is a direct computation using the notation (4.3).

For the fourth, Egm(ϕ|B) is the function Φ that is B-measurable and
∫
Φψ d(gm) =∫

ϕψ d(gm) for each ψ ∈ L∞(B). Expanding the LHS,∫
Φψ d(gm)=

∫
Φψg dm =

∫
ΦψEm(g|B) dm

whereas the RHS becomes∫
ϕψ d(gm)=

∫
ϕψg dm =

∫
Em(gϕ|B)ψ dm

Thus ΦEm(g|B)= Em(gϕ|B), as claimed. �

Proposition 4.3.3 ([NTV18]). If ϕ,ψ are both in the cone C2 and have the same mean,∫
X ϕdm = ∫

X ψdm, then by [NTV18, Theorem 1.2]

∥∥P n(ϕ)−P n(ψ)
∥∥

L1(m) ≤ Cα

(‖ϕ‖L1(m) +‖ψ‖L1(m)
)
n− 1

α+1(logn)
1
α

Moreover [NTV18, Remark 2.5 and Corollary 2.6], for ϕ ∈ C1, h ∈C2 and any sequence of
maps T ∞:

∥∥P n ([
hϕ

]m)∥∥
L1(m) ≤ CαF

(‖ϕ‖C1 +m(h)
)
n− 1

α+1(logn)
1
α

where Cα depends only on the map Tα, and F : R→R is an affine function.
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The decay result of Proposition 4.3.3 for products of elements in the cone with C1

observables (see also [LSV99, Theorem 4.1]), follows from Lemma 4.3.4, which was

stated in [LSV99, proof of Theorem 4.1]. The proof of Lemma 4.3.4 is given next; a

different – less transparent – proof is given in [NTV18, Lemma 2.4].

Lemma 4.3.4. Suppose ϕ ∈ C1 and h ∈ C2. Then there exist constants λ, A,B ∈ R such
that (ϕ+ A +λx)h+B and (A +λx)h+B both are in C2 and hence if

∫
ϕhdm = 0 then∥∥P j(ϕh)

∥∥
L1(m) ≤ Cρ( j)‖ϕh‖L1(m) where ρ( j) is the L1(m)-decay for centered functions

from the cone C2.

Note that in our setting ρ( j)= j−
1
α+1(log j)

1
α .

Proof of Lemma 4.3.4 Let f1 = (ϕ+λx+ A)h+B and f2 = (A+λx)h+B.

First we show that f1 ∈C2. It is clear that f1 ∈ C0(0,1]∩L1(m). Choose λ< 0 such that

|λ| > ‖ϕ′‖L∞ and A > 0 large enough so that

ϕ+λx+ A > 0.

This ensures that f1 ≥ 0 for any value of B ≥ 0. Note now that

(ϕ+λx+ A)′ =ϕ′+λ≤ 0

so ϕ+λx+ A is decreasing. Since both ϕ+λx+ A and h are positive and decreasing, we

obtain that f1 is decreasing as well. We show now that xα+1 f2 is increasing. Since h ∈C2,

h is non-increasing so h′ exists m-a.e. and h′ ≤ 0 m-a.e. Then (xα+1h)′ exists m-a.e. as

well, and we can compute this derivative as

(xα+1h)′ = (α+1)xαh+ xα+1h′ ≥ 0

because it is increasing.

We compute now the derivative of xα+1 f2:

(xα+1[(ϕ+λx+ A)h+B])′ = (α+1)xαϕh+ xα+1ϕ′h+ xα+1ϕh′+ (α+2)xα+1hλ+
λxα+2h′+ (α+1)Axαh+ Axα+1h′+ (α+1)xαB.

We group terms conveniently: note that

(α+1)xαϕh+ (α+1)Axαh+ xα+1ϕh′+ Axα+1h′ = (ϕ+ A)[(α+1)xαh+h′xα+1]≥ 0

m-a.e., since the term in the square brackets corresponds to (xα+1h)′ ≥ 0. The term

λxα+2h′ is non-negative m-a.e. since λ,h′ ≤ 0. Since 0 ≤ h(x)xα ≤ am(h), we have 0 ≤
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−xα+1h′ ≤ (α+ 1)xαh ≤ (α+ 1)am(h) and then the terms (α+ 2)λxα+1h+ xα+1hϕ′ are

bounded. Thus, we can take B > 0 big enough so that

(α+1)xαB ≥ (α+2)λxα+1h+ xα+1hϕ′.

With this, we have that (xα+1h)′ ≥ 0 and so xα+1h is increasing.

Finally, we check that f1(x)xα ≤ am( f1). Using that h(x)xα ≤ am(h),

[(ϕ+λx+ A)h+B]xα ≤ (ϕ+λx+ A)hxα+B ≤ sup(ϕ+λx+ A)am(h)+B.

On the other hand, am((ϕ+λx+ A)h+B) ≥ a inf(ϕ+λx+ A)m(h)+aB, so it suffices to

have

sup(ϕ+λx+ A)am(h)+B ≤ a inf(ϕ+λx+ A)m(h)+aB

⇐⇒ B ≥ a
a−1

[
sup(ϕ+λx+ A)− inf(ϕ+λx+ A)

]
m(h).

Thus, we see that f1 ∈C2. The proof that f2 ∈C2 is the same, take ϕ(x)≡ 0. �

A consequence of Proposition 4.3.3 is the non-stationary decay of correlations ([NTV18,

Page 1130]) ∣∣∣∣∫
X
ϕ ·ψ◦Tωn ◦ . . .◦Tω1 dm−m(ϕ) ·m(ψ◦Tωn ◦ . . .◦Tω1)

∣∣∣∣
≤ ‖ψ‖∞

∥∥∥∥P n
ω (ϕ)−P n

ω

(
1

∫
X
ϕdm

)∥∥∥∥
L1(m)

We derive next decay estimates with respect to the measure m̃, which are better in Lp,

p > 1, than those for m.

Proposition 4.3.5. For ϕ : [0,1]→R bounded, h ∈C2 and 1≤ p ≤∞:∥∥∥P̃ n (
ϕ

)∥∥∥
L∞(m̃)

≤ m(g)‖ϕ‖L∞(m̃)(4.8)

For ϕ ∈ C1([0,1]), h ∈C2 and 1≤ p ≤∞:∥∥∥P̃ n
([

(g−1h)ϕ
]m̃)∥∥∥

L1(m̃)
≤ CαF1

(‖ϕ‖C1 +m(h)
)
n− 1

α+1(logn)
1
α(4.9) ∥∥∥P̃ n

([
(g−1h)ϕ

]m̃)∥∥∥
Lp(m̃)

≤ CαFp
(‖ϕ‖C1 +m(h)

)
n

1
p
(− 1

α+1
)
(logn)

1
pα(4.10)

where Cα depends only on Tα and Fp are affine functions.

Note that the L1 and Lp bounds are relevant only for ϕ ∈ C1.
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Proof. To prove the L∞ estimate (4.8) note that by the invariance of the cone C2,

P n (g) ∈C2, so P n (g)≤ x−αm(P n (g))= x−αm(g). That is, using (4.6),

P̃ n (1)= g−1P n (g)≤ m(g)

Since −‖ϕ‖L∞1≤ϕ≤ ‖ϕ‖L∞1 and P̃ n are positive operators, we obtain (4.8).

For (4.9) assume that ϕ ∈ C1 (otherwise it is clearly satisfied). In view of (4.7):

(4.11)

∥∥∥P̃ n
([

(g−1h)ϕ
]m̃)∥∥∥

L1(m̃)
=

∥∥∥∥g−1P n ([
hϕ

]m)− m(gϕ)
m(g)

g−1P n([g]m)
∥∥∥∥

L1(m̃)

=
∥∥∥∥P n ([

hϕ
]m)− m(gϕ)

m(g)
P n([g]m)

∥∥∥∥
L1(m)

≤ ∥∥P n ([
hϕ

]m)∥∥
L1(m) +

∣∣∣∣m(gϕ)
m(g)

∣∣∣∣∥∥P n([g]m)
∥∥

L1(m)

By [NTV18, Theorem 1.2], there is an affine function F :R→R such that for ϕ ∈ C1([0,1])

and h ∈ C2 can write
[
ϕh

]m =Ψ1 −Ψ2 with Ψ1,Ψ2 ∈ C2 and ‖Ψ1,2‖L1(m) ≤ F (‖ϕ‖C1 +
m(h)). By [NTV18, Theorem 1.2], for an observable ψ in the cone C2 and for any sequence

of maps T ∞, we have∫
X

∣∣P n ([
ψ

]m)∣∣dm ≤ Cα‖ψ‖L1(m)n
− 1
α+1(logn)

1
α

where Cα depends only on Tα. Applying these to (4.11), we obtain (4.9).

Finally, note that the L1 and L∞ bounds give (4.10), since

(4.12) ‖ f ‖Lp ≤ ‖ f ‖1− 1
p

L∞ ‖ f ‖
1
p

L1

because ∫
| f |p ≤

∫
‖ f ‖p−1

L∞ | f | = ‖ f ‖p−1
L∞ ‖ f ‖L1 .

�

Lemma 4.3.6. Let ϕ ∈ C1 and α< 1. Then

‖Hn ◦T n‖Lp(m) ≤
Cp,α,‖ϕ‖C1+m(g) if 1≤ p < 1

α
−1

Cp,α,‖ϕ‖C1+m(g)n
1+ 1

p (1− 1
α )(logn)

1
pα if p >max{1, 1

α
−1}

and the same bounds hold for ‖H̃n ◦T n‖Lp(m̃), where

Hn ◦T n := Em
(
[Sn−1]m |Bn

)
, H̃n ◦T n := Em̃

(
[Sn−1]m̃ |Bn

)
, Bn :=T −nB.
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Proof. We prove the statement for H̃n. The one for Hn is obtained the same way, using

Proposition 4.3.3 instead of (4.9).

Using the definition of H̃n:

(4.13)∥∥H̃n ◦T n∥∥
Lp(m̃) =

∥∥∥∥∥n−1∑
k=1

Em̃

([
ϕ◦T k

]m̃ |Bn

)∥∥∥∥∥
Lp(m̃)

≤
n−1∑
k=1

∥∥∥∥Em̃

([
ϕ◦T k

]m̃ |Bn

)∥∥∥∥
Lp(m̃)

We will bound each term of the above sum in both L1 and L∞, and then use (4.12) to

obtain an Lp-bound.

In L∞ we have∥∥∥∥Em̃

([
ϕ◦T k

]m̃ |Bn

)∥∥∥∥
L∞(m̃)

≤
∥∥∥∥[
ϕ◦T k

]m̃
∥∥∥∥

L∞(m̃)
≤ 2‖ϕ‖L∞(m̃).

In L1 we use (4.2) to compute the conditional expectation. Since the conditional expec-

tation preserves the expected value, one can check that the centering holds as written

below2. We can then use (4.9) for the decay, with h =P k(g), because P̃ k(1)= g−1P k(g).

∥∥∥∥Em̃

([
ϕ◦T k

]m̃ |Bn

)∥∥∥∥
L1(m̃)

=

∥∥∥∥∥∥∥∥
P̃n ◦ · · · ◦ P̃k+1

([
ϕ · P̃ k(1)

]m̃
)

P̃ n(1)
◦T n

∥∥∥∥∥∥∥∥
L1(m̃)

=
∥∥∥∥P̃n ◦ · · · ◦ P̃k+1

([
ϕ · P̃ k(1

)]m̃
)
∥∥∥∥

L1(m̃)
=

∥∥∥∥P̃n ◦ · · · ◦ P̃k+1

([
ϕ · g−1P k(g)

]m̃
)∥∥∥∥

L1(m̃)

≤ CαF1

(
‖ϕ‖C1 +m(P k(g))

)
(n−k)−

1
α+1(log(n−k))

1
α .

Note that m(P k(g))= m(g), so the coefficient above does not depend on k.

Apply now (4.12) to obtain for 1≤ p ≤∞ that∥∥∥∥Em̃

([
ϕ◦T k

]m̃ |Bn

)∥∥∥∥
Lp(m̃)

≤ Cp,α,‖ϕ‖C1+m(g)

[
(n−k)−

1
α+1 (log(n−k))

1
α

] 1
p

which gives the desired bound upon summing over k = 1, . . . ,n−1. �

A useful remark is the following lower bound for functions in the cone C2:

Proposition 4.3.7 ([LSV99, Lemma 2.4]). For every function f ∈C2 one has

inf
x∈[0,1]

f (x)= f (1)≥min

{
a,

[
α(1+α)

aα

] 1
1−α

}
m( f ).

Denote the constant in the above expression by Dα. Then P n1≥ Dα > 0 for all n ≥ 1.
2m̃(ϕ ·P̃ k(1))= m̃(ϕ◦T k) because, by the definition of the transfer operator,

∫
ϕ ·P̃ k(1)dm̃ = ∫

ϕ◦T k ·
1dm̃
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We will also use Rio’s inequality, taken from [MPU+06]. This is a concentration inequality

that allows us to bound the moments of Birkhoff sums.

Proposition 4.3.8 ([MPU+06, Rio17]). Let {X i} be a sequence of L2 centered random
variables with filtration Fi =σ(X1, . . . , X i). Let p ≥ 1 and define

bi,n = max
i≤u≤n

‖X i

u∑
k=i

E(Xk|Fi)‖Lp ,

then

E|X1 +·· ·+ Xn|2p ≤
(
4p

n∑
i=1

bi,n

)p

.

Finally, we recall a theorem of Liverani which allows us to establish distributional

convergence of stationary systems.

Theorem 4.3.9 (special case of [Liv96, Theorem 1.1]). Assume T : Y →Y preserves the
probability measure η on the σ-algebra B. Denote by P its transfer operator.
If ϕ ∈ L∞(η) with η(ϕ)= 0 and

∑
k ‖Pkϕ‖L1(η) <∞ then a central limit theorem holds for

Snϕ :=∑n
k=1ϕ◦Tk with respect to the measure η, that is, 1p

n Snϕ converges in distribution
to N(0,σ2). The variance is given by

σ2 =−η(ϕ2)+2
∞∑

k=0
η(ϕ ·ϕ◦Tk).

In addition, σ2 = 0 iff ϕ◦T is a measurable coboundary, that is ϕ◦T = g− g ◦T for a
measurable g.

Note that this theorem uses essentially bounded observables; we will apply this theorem

to continuous observables in compact domains.

4.4 Polynomial large deviations estimates

In this section we prove the large deviation estimates for sequential, annealed and

quenched cases.

4.4.1 Sequential dynamical systems

Recall we fixed a sequence T ∞ = . . .Tαn , . . . ,Tα1 where each of the maps is of the form

Tα j (x)=
x+2α j x1+α j , 0≤ x ≤ 1/2,

2x−1, 1/2≤ x ≤ 1
,
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for 0<α j ≤α< 1. In the first part of this section we prove that for such a fixed sequence

of maps T ∞, a polynomial large deviations bound holds for the centered sums.

Theorem 4.4.1 (Sequential LD). Let 0<α< 1 and ϕ ∈ C1([0,1]). Then the centered sums
satisfy the following large deviations upper bound: for any ε> 0 and p >max{1, 1

α
−1},

m

{
x :

n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]> nε

}
≤ Cα,p,‖ϕ‖C1 n1− 1

α (logn)
1
α ε−2p

where C = Cα,p,‖ϕ‖C1 is a constant depending on α, p and the C1 norm of ϕ, but not on
the sequence T ∞.
The same estimate (by the same proof) holds for the measure m̃.

Remark 4.4.2. In [MN08] these bounds are shown to be basically optimal since in the
case of a single map Tα being iterated there exists an open and dense set of C1 observables
ϕ such that for any δ > 0, µ

{
x :

∑n
j=1[ϕ(T j)(x)−m(ϕ(T j))]> nε

}
≥ Cεn1− 1

α−δ infinitely
often for the absolutely continuous invariant measure µ.

Proof of Theorem 4.4.1 We prove the estimate for m, the one for m̃ is obtained the

same way.

Fix n and for i ∈ {1, . . . ,n}, define the sequence of σ−algebras Fi,n =Fi =T −(n−i)(B). Note

that Fi ⊂Fi+1 hence {Fi}n
i=1 is an increasing sequence of σ−algebras. Take X i =

[
ϕ

]
n−i ◦

T n−i, so that X i is Fi measurable. Recall that ψ j =
[
ϕ

]
j +H j −H j+1 ◦T j+1 for all j ≥ 0.

We define Yi =ψn−i ◦T n−i, hi = Hn−i ◦T n−i for i ∈ {1, . . . ,n}. Hence Yi = X i +hi −hi−1.

Note also that Gi := σ(X1, . . . , X i) ⊂ σ(F1, . . . ,Fi) = Fi, as σ(X i) ⊂ Fi for all i. Since

E(ψi ◦T i|T −i−1B)= 0, E(Yi|F j)= 0 for all j ≥ i. Hence E(Yi|G j))= E(E(Yi|F j)|G j)= 0 for

j ≥ i.
For p ≥ 1 define bi,n as in Rio’s inequality, with Gi, X i as described above so that

bi,n = max
i≤u≤n

∥∥∥∥∥X i

u∑
k=i

E(Xk|Gi)

∥∥∥∥∥
Lp(m)

.

Here all the expectations are taken with respect to m.

Recalling the expression we have for the martingale difference, we can write the sum

inside the p-norm as

u∑
k=i

E(Xk|Gi)=
u∑

k=i
[E(Yk|Gi)−E(hk|Gi)+E(hk−1|Gi)]

=
[

u∑
k=i

E(Yk|Gi)

]
+E(hi−1|Gi)−E(hu|Gi).

87



CHAPTER 4. LIMIT LAWS FOR SEQUENTIAL AND RANDOM DYNAMICAL
SYSTEMS

If k > i, then E(Yk|Gi)= 0. This reduces the expression above to

E(Yi|Gi)+E(hi−1|Gi)−E(hu|Gi).

We note that ‖E[ f |G ]‖p ≤ ‖ f ‖p for any f ∈ Lp(m), p ≥ 1. Therefore, we may bound bi,n

by maxi≤u≤n ‖X i‖∞(‖Yi‖p +‖hi−1‖p +‖hu‖p).

We now pick p >max{1, 1
α
−1}. Since ‖X i‖∞ is uniformly bounded by 2‖ϕ‖∞ and Yi = X i+

hi−hi−1, we may bound maxi≤u≤n ‖X i‖∞(‖Yi‖p+‖hi−1‖p+‖hu‖p) by Cα,p,‖ϕ‖C1 n1+ 1
p (1− 1

α )(logn)
1

pα

where Cα,p,‖ϕ‖C1 is independent of n. This is a consequence of Proposition 4.3.6.

Therefore (4p
∑n

i=1 bi,n)p ≤ Cα,ϕ,pn2p+(1− 1
α )(logn)

1
α . By Rio’s inequality E|X1 + X2 +·· ·+

Xn|2p ≤ Cα,ϕ,pn2p+(1− 1
α )(logn)

1
α . Thus, by Markov’s inequality,

m(|X1 +·· ·+ Xn|2p > n2pε2p)≤ Cα,ϕ,p(n−2pε−2p)n2p+(1− 1
α )(logn)

1
α = Cα,ϕ,pn1− 1

α (logn)
1
α ε−2p

�

4.4.2 Random dynamical systems

Now we prove large deviations estimates for the randomized systems. First we recall

some notation. The annealed transfer operator P : L1(m)→ L1(m) is defined by averaging

over all the transformations:

P = ∑
β∈Ω

pβPβ =
∫
Σ

Pω dν(ω).

This operator is dual to the annealed Koopman operator U : L∞(m)→ L∞(m) defined by

(Uϕ)(x)= ∑
β∈Ω

pβϕ(Tβx)=
∫
Σ
ϕ(Tωx)dν(ω)=

∫
Σ
ϕ̃(F(ω, x))dν(ω)

where ϕ̃(ω, x) :=ϕ(x). The annealed operators satisfy the duality relationship∫
X

(Uϕ) ·ψ dm =
∫

X
ϕ ·Pψ dm

for all observables ϕ ∈ L∞(m) and ψ ∈ L1(m).

Remark 4.4.3. It is easy to see that the averaged transfer operator P has no worse rate
of decay in L1 then the slowest of the maps (so better than n− 1

α+1(logn)
1
α , by Proposi-

tion 4.3.3). By taking a limit point of 1
n

∑n
k=1 Pk(1), there is an invariant vector h for P

in the cone C2, see [LSV99]. The measure µ= hm is stationary for the RDS; by Proposi-
tion 4.3.7, h ≥ Dα > 0.
Moreover, Bahsoun and Bose [BB16b, BB16a] have shown that there exists a unique
absolutely continuous (with respect to the Lebesgue measure) stationary measure µ, and
ν⊗µ is mixing — so also ergodic.
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Using the same idea as in the proof of Theorem 4.4.1, we can obtain an annealed result

for the random dynamical system. Note that Pµ, the transfer operator with respect to

the stationary measure µ, satisfies Pµ1= 1 and so ‖Pµϕ‖∞ ≤ Pµ(‖ϕ‖∞)= ‖ϕ‖∞‖Pµ1‖∞ =
‖ϕ‖∞. An easy calculation shows that Pµ(ϕ)= 1

h P(hϕ) where h ∈C2 is the density of the

invariant measure µ and hence h ≥ Dαm(h) is bounded below. As before this observation

allows us to bootstrap in some sense the L1(µ) decay rate to Lp(µ) for p ≥ 1, a technique

used in [MN08, Mel09].

Theorem 4.4.4 (Annealed LD). Let ϕ ∈ C1([0,1]) with µ(ϕ) = 0 and let 0 < α< 1. Then
the Birkhoff averages have annealed large deviations with respect to the measure ν⊗µ
with rate

(ν⊗µ){(ω, x) :

∣∣∣∣∣ n∑
j=1

ϕ◦T
j
ω (x)

∣∣∣∣∣≥ nε}≤ Cα,p,‖ϕ‖C1 n1− 1
α (logn)

1
α ε−2p

for any p >max{1, 1
α
−1}.

Note that the Birkhoff sums above are not centered for a given realization ω, only on
average over Σ.

Proof. To prove this result we will use the construction used to prove the annealed CLT

in [ANV15]: let ΣX := XN0 , endowed with the σ-algebra G generated by the cylinders,

and the left shift operator τ : ΣX →ΣX .

Denote by π the projection from ΣX onto the 0-th coordinate, that is, π(x) = x0 for

x = (x0, x1, . . .). We can lift any observable ϕ : X → R to an observable on ΣX by setting

ϕπ :=ϕ◦π : ΣX →R.

Following [ANV15, §4], one can introduce a τ-invariant probability measure µc on ΣX

such that Eµ(ϕ)= Eµc (ϕπ), and the law of Sn(ϕ) on Σ× X under ν⊗µ is the same as the

law of the n-th Birkhoff sum of ϕπ on ΣX under µc and τ; thus it suffices to establish

large deviations for the latter.

Define now

Hn :=
n∑

k=1
Pk
µ(ϕ) : X →R

From the relation Pµ(.) = 1
h P(.h), we have that ‖Pn

µ (ϕ)‖L1(µ) ≤ Cα,ϕn1− 1
α (logn)1/α be-

cause µ(ϕ)= 0. We calculate Eµ|P i
µ(ϕ)|p = Eµ[|P i

µ(ϕ)|p−1|P i
µ(ϕ)|]≤ ‖P i

µ(ϕ)‖p−1
∞ ‖P i

µ(ϕ)‖L1(µ).

Hence ‖Pk
µ(ϕ)‖Lp(µ) ≤ Ck(1−1/α)/p(logk)1/(pα) and thus ‖Hn‖Lp(µ) satisfies the bounds of

Lemma 4.3.6.
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We lift ϕ and Hn to ΣX and denote them by ϕπ and Hn,π respectively, and define

χn :=ϕπ+Hn,π−Hn,π ◦τ :ΣX →R.

We now continue as in the proof of Theorem 4.4.1, applying Rio’s inequality. For i =
1, . . . ,n take the sequences {X i =ϕπ ◦τn−i}, {Yi = χn−i ◦τn−i} and Gi = τ−(n−i)G . We have

Eµc [Yi|Gk]= 0 for k > i and so, for p >max{1, 1
α
−1},

bi,n = max
i≤u≤n

∥∥∥∥∥X i

u∑
k=i

Eµc (Xk|Gi)

∥∥∥∥∥
Lp(µc)

≤ Cn1+ 1
p (1− 1

α )(logn)
1

pα

which gives, as in Theorem 4.4.1,

µc(|X1 +·· ·+ Xn|2p > n2pε2p)≤ Cα,ϕ,pn1− 1
α (logn)

1
α ε−2p

�

Using similar ideas, it is possible to obtain an annealed central limit theorem. This has

been established already by Young Tower techniques in [BB16a, Theorem 3.2]. We include

the statement of the annealed central limit and an alternative proof for completeness

and to give an expression for the annealed variance.

Proposition 4.4.5 (Annealed CLT). If α < 1
2 and ϕ ∈ C1 with µ(ϕ) = 0 then a central

limit theorem holds for Snϕ on Σ× X with respect to the measure ν⊗µ, that is, 1p
n Snϕ

converges in distribution to N(0,σ2), with variance σ2 given by

σ2 =−µ(ϕ2)+2
∞∑

k=0
µ(ϕUkϕ)

Proof. We will use the results of [ANV15, Section 4] and [Liv96, Theorem 1.1] (see

Theorem 4.3.9). We proceed as in Theorem 4.4.4, using the averaged operators U and

P. As in [ANV15, Section 4], to U corresponds a transition probability on X given by

U(x, A)=∑
β{pβ : Tβx ∈ A}. The stationary measure µ is invariant under U . Extend µ to

the unique probability measure µc on ΣX := X N0 = {x = (x0, x1, x2, . . . , xn, . . .)}, endowed

with the σ-algebra G given by cylinder sets, such corresponding to µ such that {xn}n≥0

is a Markov chain on (ΣX ,G ,µc) (where xn is the n-th coordinate of x) induced by the

random dynamical system. The left shift τ on ΣX preserves µc. Given ϕ : X →R, µ(ϕ)= 0,

we define ϕπ on ΣX by ϕπ(x0, x1, x2, . . . , xn, . . .) :=ϕ(x0). As in [ANV15, Section 4], to prove

the CLT for Sn(ϕ) with respect to ν⊗µ on Σ× X it suffices to prove the CLT for the

Birkhoff sum
∑n

j=0ϕπ ◦τk with respect to µc on ΣX .
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We introduce the Koopman operator Ũ and transfer operator P̃ for the map τ on the

probability space (ΣX ,G ,µc). We define the decreasing sequence of σ-algebras Gk = τ−kG ,

and note that P̃, Ũ satisfy P̃kŨk f = f and ŨkP̃k f = Eµc ( f |Gk) for every µc-integrable f .

We note that ϕπ ∈ L∞(µc). As in [ANV15, Lemma 4.2] we have P̃n(ϕπ) = (Pnϕ)π. Thus∑∞
k=0 P̃kϕπ converges in L1(µc) if α< 1

2 and therefore
∑∞

k=0 |
∫
ϕπŨkϕπdµc| <∞. Thus the

result for
∑n

j=0ϕπ ◦τk follows from [Liv96, Theorem 1.1]. The stated formula for σ2 is

also given in [Liv96, Theorem 1.1]. �

We will use the annealed and sequential results to obtain quenched large deviations for

random systems of intermittent maps. We denote the Birkhoff sums by Sn,ω(x) to stress

the dependence on the realization ω.

Theorem 4.4.6 (Quenched LD). Suppose ϕ ∈ C1 and µ(ϕ)= 0. Fix 0<α< 1. Then, given
p >max{1, 1

α
−1} and κ := d 4p

1−αe for ν-almost every realization ω ∈Σ the Birkhoff averages
have large deviations with polynomial rate, even without centering: there is an N(ω) such
that for each ε> 0

m{x : Sn,ωϕ> 4nε}≤ Cα,p,ϕn1− 1
α (logn)

1
α ε−κ for n ≥ N(ω).

Note that the Birkhoff sums Sn,ωϕ above are not centered with respect to the realization

ω, only on average over Σ.

Remark 4.4.7. The point of the above Theorem, compared to the sequential Theorem 4.4.1,
is that for almost each realization the large deviation estimates hold even without

centering. That is, the contribution of the means (with respect to the measure m on
X ) can be ignored for almost each realization ω.

Proof of Theorem 4.4.6 Choose p >max{1, 1
α
−1} and ε> 0. By Theorem 4.4.1, for all

ω ∈Σ,

m

{
x :

∣∣∣∣∣ 1
n

Sn,ωϕ(x)− 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≥ ε
}
≤ Cα,p,ϕn1− 1

α (logn)
1
α ε−2p

with Cα,ϕ,δ independent of ω. Integrating over Σ with respect to ν we obtain

ν⊗m

{
(ω, x) :

∣∣∣∣∣ 1
n

Sn,ωϕ(x)− 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≥ ε
}
≤ Cα,p,ϕn1− 1

α (logn)
1
α ε−2p

By Theorem 4.4.4, we also have the annealed estimate for the non-centered sums:

ν⊗m
{

(ω, x) :
∣∣∣∣ 1
n

Sn,ωϕ(x)
∣∣∣∣≥ ε}≤ Cα,p,ϕn1− 1

α (logn)
1
α ε−2p
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Theorem 4.4.4 refers to the measure ν⊗µ but since dm
dµ = 1

h ≤ 1
Dα

, the large deviations

estimate applies also to ν⊗m. Observe now that{
(ω, x) :

∣∣∣∣∣ 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣> 2ε

}

⊂
{

(ω, x) :
∣∣∣∣ 1
n

Sn,ωϕ(x)
∣∣∣∣< ε,

∣∣∣∣∣ 1
n

Sn,ωϕ(x)− 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≥ ε
}

⋃{
(ω, x) :

∣∣∣∣ 1
n

Sn,ωϕ(x)
∣∣∣∣> ε} .

Thus

ν⊗m

{
(ω, x) :

∣∣∣∣∣ 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣> 2ε

}
≤ Kα,p,ϕn1− 1

α (logn)
1
α ε−2p

and, as there is no dependence on x ∈ X , this means

ν

{
ω :

∣∣∣∣∣ 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣> 2ε

}
≤ Kα,p,ϕn1− 1

α (logn)
1
α ε−2p(4.14)

Denote β := 1
α
−1> 0.

The proof we give does not give an optimal value of κ. In the case β> 1 a simpler proof

may be given but the resulting exponent κ is also not optimal and no better than the

estimate we give.

Let τ= 2
β

and δ> 0 small. Choose γ= 1
2p (β− 1

τ
)−δ= β

4p −δ and κ= d(1+β−1)(4p)e = d 4p
1−αe.

Then (2pγ−β)τ<−1 and γκ>β for δ> 0 small enough.

For ε= n−γ the bound (4.14) becomes

ν

{
ω :

∣∣∣∣∣ 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣> 2n−γ
}
≤ Kα,p,ϕn2pγn−β(logn)

1
α

Consider the subsequence nk := kτ. As (2pγ−β)τ<−1, for ν almost every ω there exists

an N(ω) such that for all nk > N(ω),∣∣∣∣∣ 1
nk

nk∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≤ 2n−γ
k

If nk ≤ n < nk+1 then∣∣∣∣∣ 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≤ 1
nk

∣∣∣∣∣ nk∑
j=1

m(ϕ◦T j
ω)+

n∑
j=nk+1

m(ϕ◦T j
ω)

∣∣∣∣∣
≤ 2n−γ

k + ‖ϕ‖∞
nk

|nk+1 −nk|
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There is K > 0, independent of ω, depending only on τ, γ and ‖ϕ‖∞, such that

2n−γ
k + ‖ϕ‖∞

nk
|nk+1 −nk| < 3n−γ if k ≥ K .

Indeed, limk→∞
nk+1
nk

= 1, 1
nk

|nk+1−nk| =O( 1
k ), 1

k =O( 1
n1/τ ) and n−1/τ < n−γ because 1/τ> γ.

Increase N(ω) such that n > N(ω) implies n ≥ Kτ and Cα,p,ϕnγκ−β(logn)1/α > 1.

We will show that for n > N(ω)

m
(
x :

∣∣∣∣ 1
n

Sn,ωϕ(x)
∣∣∣∣≥ 4ε

)
≤ Cα,p,ϕε

−κn−β(logn)1/α.

Suppose ε < n−γ. Then Cα,p,ϕε
−κn−β(logn)1/α ≥ Cα,p,ϕnγκ−β(logn)1/α > 1 and there is

nothing to prove.

If ε≥ n−γ and n > N(ω) then, as | 1
n

∑n
j=1 m(ϕ◦T j

ω)| < 3ε,

{
x :

∣∣∣∣ 1
n

Sn,ωϕ(x)
∣∣∣∣≥ 4ε

}
⊂

{
x :

∣∣∣∣∣ 1
n

Sn,ωϕ(x)− 1
n

n∑
j=1

m(ϕ◦T j
ω)

∣∣∣∣∣≥ ε
}

Hence the result holds by Theorem 4.4.1, as

m

(
x :

∣∣∣∣∣ 1
n

Sn,ωϕ(x)− 1
n

n∑
j=1

m
(
ϕ◦T j

ω

)∣∣∣∣∣≥ ε
)
≤ Cα,p,ϕε

−2pn−β(logn)1/α

and 2p < κ. �

We remark that the methods used to prove these results in the uniformly expanding case

are not applicable here, as they rely on the quasi-compactness of the transfer operator.

In the uniformly expanding case, which has exponential large deviations for Hölder

observables, it is possible to obtain a rate function.

4.5 The Role of Centering in the Quenched CLT for
RDS

In this section we discuss two results: Proposition 4.5.1, that the quenched variance is

the same for almost all realizations ω ∈Σ, and Theorem 4.5.5, that generically one must

center the observations in order to obtain a CLT (as opposed to LD Theorem 4.4.6, where

centering did not affect the quenched LD). Note that these hinge on the rate of growth of

the mean of the Birkhoff sums; we see that it is o(n) but not o(
p

n). We use the recent

paper by Hella and Stenlund [HS20] to extend and clarify results of [NTV18].
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In [NTV18, Theorem 3.1] a self-norming quenched CLT is obtained for ν-a.e. realiza-

tion ω of the random dynamical system of Theorem 4.4.4. More precisely, recalling

the definition of the centered observables
[
ϕ

]
k (ω, x) = ϕ(x)− m(ϕ ◦T k

ω ) and σ2
n(ω) :=∫ [∑n

k=1

[
ϕ

]
k (ω,T k

ω x)
]2 dx it is shown that 1

σn(ω)
∑n

k=1

[
ϕ

]
k (ω, ·)◦T k

ω → N(0,1) provided

σ2
n ≈ nβ, with α< 1

9 and β> 1
2(1−2α) . Various scenarios under which σ2

n(ω)> nβ are given

in [NTV18]. See also [HL19].

If the maps Tωi preserved the same invariant measure then it suffices to consider observ-

ables with mean zero, since the mean would be the same along each realization. In the

setting of [ALS09] this is the case, namely all realizations preserve Haar measure, and

the authors address the issue of whether the variance σ2
n(ω) can be taken to be the “same”

for almost every quenched realization in the setting of random toral automorphisms.

They show that for almost every quenched realization the variance in the quenched CLT

may be taken as a uniform constant. The technique they use is adapted from random

walks in random environments and consists in analyzing a random dynamical system on

a product space.

A natural question is whether in our setup of random intermittent maps, after centering,

σn(ω) can be taken to be “uniform” over ν-a.e. realization. Recent results of Hella

and Stenlund [HS20] give conditions under which 1
nσ

2
n(ω)→σ2 for ν-a.e. ω, as well as

information about rates of convergence. Note that this is also true in the context of

uniformly expanding maps considered by [AA16] using the same method used in [HS20].

A related question is whether we need to center at all. For example, if µ(ϕ)= 0, where µ

is the stationary measure on X , then for ν-a.e ω

lim
n→∞

1
n

n∑
j=1

[
ϕ(T j

ω x)−m(ϕ(T j
ω ))

]
→ 0 for µ-a.e. x

by the ergodicity of ν⊗µ, but also

lim
n→∞

1
n

n∑
j=1

m
(
ϕ(T j

ω )
)
→ 0 for ν-a.e. ω,

by the proof of Theorem 4.4.6. So for the strong law of large numbers centering is not

necessary. Using ideas of [AA16] we consider the related question of whether centering is

necessary to obtain a quenched CLT with almost surely constant variance. We show the

answer to this is positive: to obtain an almost surely constant variance in the quenched

CLT we need to center.
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4.5.1 Non-random quenched variance

For Proposition 4.5.1, we verify that our system satisfies the conditions SA1, SA2, SA3

and SA4 of [HS20]; then, by [HS20, Theorem 4.1], the quenched variance is almost surely

the same, equal to the annealed variance.

Proposition 4.5.1. Let α< 1
2 , ϕ ∈ C1 and define the annealed variance

σ2 := lim
n→∞

1
n

∥∥[Sn]ν⊗m∥∥2
L2(ν⊗m) = lim

n→∞
1
n

∥∥∥∥Sn −
∫
Σ×X

Snd ν⊗m
∥∥∥∥2

L2(ν⊗m)

=
∞∑

k=0
(2−δ0k) lim

i→∞

∫
Σ

[
m(ϕiϕi+k)−m(ϕi)m(ϕi+k)

]
dν

If σ2 > 0 then for ν-a.e. ω

lim
n→∞

1p
n

n∑
j=1

[
ϕ(T j

ω ·)
]m →d N(0,σ2)

in distribution with respect to m.

Remark 4.5.2. Proposition 4.4.5 shows that the annealed CLT holds for α< 1
2 and under

the usual genericity conditions the annealed variance satisfies σ2 > 0. Thus Proposi-
tion 4.5.1 extends [NTV18, Theorem 5.3] from the parameter range α< 1

9 to α< 1
2 . Note

that [HL19], proved the CLT for α< 1
3 .

Proof of Proposition 4.5.1 We will verify conditions SA1, SA2, SA3 and SA4 of [HS20,

Theorem 4.1] in our setting, with η(k)= Ck− 1
α+1(logk)

1
α in the notation of [HS20].

SA1: If j > i then∣∣∣∣∫ ϕ◦T i
ω (x)ϕ◦T

j
ω (x)dm−

∫
ϕ◦T i

ω (x)dm
∫
ϕ◦T

j
ω (x)dm

∣∣∣∣
=

∣∣∣∣∫ ϕ◦T
j−i+1
ω (T i

ω x)ϕ(x)P i
ω1dm−

∫
ϕP i

ω1dm
∫
ϕ(x)P j

ω1dm
∣∣∣∣≤ C( j− i)−

1
α+1(log( j− i))

1
α

by the same argument as in the proof of [NTV18, Proposition 1.3].

SA2: Our underlying shift σ :Σ→Σ is Bernoulli hence α-mixing.

SA3: We need to check [HS20, equations (4), (5)] that∣∣∣∣∫ ϕ(Tωk Tωk−1 · · ·Tω1 x)dm−
∫
ϕ(Tωk Tωk−1 · · ·Tωr+1 x)dm

∣∣∣∣≤ Cη(k− r).

This follows since∣∣∣∣∫ ϕ(Tωk Tωk−1 · · ·Tω1 x)dm−
∫
ϕ(Tωk Tωk−1 · · ·Tωr+1 x)dm

∣∣∣∣
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=
∣∣∣∣∫ ϕ(x)Pωk Pωk−1 · · ·Pω11dm−

∫
ϕ(x)Pωk Pωk−1 · · ·Pωr+11dm

∣∣∣∣
≤ ‖ϕ‖∞

∥∥Pωk Pωk−1 · · ·Pωr+1[1−Pωr · · ·Pω11]
∥∥

L1

Since 1 and Pωr · · ·Pω11 both lie in the cone and have the same m-mean, we have

∥∥Pωk Pωk−1 · · ·Pωr+1[1−Pωr · · ·Pω11]
∥∥

L1 ≤ C(k− r)−
1
α+1(log(k− r))

1
α

by [NTV18, Theorem 1.2].

SA4: (σ,Σ,ν) is stationary so SA4 is automatic. �

4.5.2 Centering is generically needed in the CLT

Now we address the question of the necessity of centering in the quenched central limit

theorem. We show that if
∫
ϕdµβi 6=

∫
ϕdµβ j for two maps Tβi , Tβ j , where µβi is the

invariant measure of Tβi , then centering is needed: although

lim
n→∞

1p
n

n∑
j=1

[
ϕ(T j

ω )−m(ϕ(T j
ω ))

]
→d N(0,σ2)

for ν-a.e. ω, it is not the case that

lim
n→∞

1p
n

n∑
j=1

ϕ(T j
ω )→d N(0,σ2)

for ν-a.e. ω.

Our proof has the same outline as that of [AA16], adapted to our setting of polynomial

decay of correlations. First we suppose that the maps Tβi do not preserve the same

measure. After reindexing we can suppose that Tβ1 and Tβ2 have different invariant

measures and that
∫
ϕdµβ1 6=

∫
ϕdµβ2 , a condition satisfied by an open and dense set of

observables. Recall that the RDS has the stationary measure dµ= hdm, h ≥ Dα > 0 and

we have assumed µ(ϕ)= 0, ϕ ∈C 1.

Our proof can be summarized in the following steps:

• First, construct a product random dynamical system on X × X and prove that it

satisfies an annealed CLT for ϕ̃(x, y)=ϕ(x)−ϕ(y) with distribution N(0, σ̃2);

• then, observe that almost every uncentered quenched CLT has the same variance

only if 2σ2 = σ̃2, where the original RDS with stationary measure dµ = hdm
satisfies an annealed CLT for ϕ with distribution N(0,σ2);
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• next, observe that the conclusions of [AA16, Theorem 9] hold in our setting and

σ̃2 = 2σ2 if and only if limn→∞ 1
n

∫
Σ

(∑n−1
k=1

∫
X ϕ◦T k

ω hdm
)2 dν= 0;

• finally, using ideas of [AA16], we show the limit above is zero only if a certain

function G on Σ is a Hölder coboundary, which in turn implies
∫
ϕdµβ1 =

∫
ϕdµβ2 ,

a contradiction.

Let ϕ : X →R be C 1, with
∫

X ϕdµ= 0, and define Sn(ϕ)=∑n−1
k=0ϕ(T k

ω x) on Σ× X . Recall

the standard expression (e.g. see [AA16]) for the annealed variance,

σ2 = lim
n→∞

1
n

∫
Σ

∫
X

[Sn(ϕ)]2 dµdν.

We also consider the product random dynamical system (Σ̃ :=Σ× X × X , ν̃ := ν⊗µ⊗µ, T̃)

defined on X2 by T̃ω(x, y)= (Tωx,Tωy). For an observable ϕ, define ϕ̃ : X2 →R by ϕ̃(x, y)=
ϕ(x)−ϕ(y), and its Birkhoff sums Sn(ϕ̃). In Theorem 4.5.3 and Corollary 4.5.4 we show

1p
n

∑n
j=1 ϕ̃◦ T̃ j →d N(0, σ̃2) with respect to ν⊗µ⊗µ for some σ̃2 ≥ 0.

The following lemma from [ANV15] is general and does not depend upon the underlying

dynamics. It is a consequence of Levy’s continuity theorem (Theorem 6.5 in [Kar93]).

Lemma ([ANV15, Lemma 7.2]). Assume that σ2 > 0 and σ̃2 > 0 are such that

1. Sn(ϕ)p
n converges in distribution to N(0,σ2) under the probability ν⊗µ,

2. Sn(ϕ̃)p
n converges in distribution to N(0, σ̃2) under the probability ν⊗µ⊗µ,

3. Sn,ω(ϕ)p
n converges in distribution to N(0,σ2) under the probability µ, for ν almost

every ω.

Then 2σ2 = σ̃2.

We will show that the system F̃(ω, x, y) = (τω,Tω1 x,Tω1 y) with respect to the measure

ν⊗µ2 on Σ× [0,1]2 (recall that ν :=P⊗N and µ is a stationary measure of the RDS) has

summable decay of correlations in L2 for α< 1
2 , and as a corollary it satisfies the CLT.

Theorem 4.5.3. Suppose that for ω ∈Σ, h = dµ
dm ∈C2 and each ϕ ∈C 1 with m(ϕh)= 0

‖Pωn . . .Pω1(ϕh)‖L1(m) ≤ Cρ(n)(‖ϕ‖C 1 +m(h)).

Then there is a constant C̃, independent of ω, such for each ψ ∈ C 1(X × X ) and ϕ ∈
L∞(X × X ) with (µ⊗µ)(ψ)= 0, one has∣∣∣∣∫ ϕ(T n

ω x,T n
ω x)ψ(x, y)dµ(x)dµ(y)

∣∣∣∣≤ C̃ρ(n)‖ϕ‖L∞(‖ψ‖C 1 +1)
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Proof. Since X × X is compact, ψ is uniformly C 1 in both variables in the sense that

ψ(x0, y) is uniformly C 1 for each x0 and similarly for ψ(x, y0). We want to estimate

I :=
∫
ϕ(T n

ω x,T n
ω y)ψ(x, y)dµ(x)dµ(y).

Define

ψ(x) :=
∫
ψ(x, y)dµ(y), hx(y) :=ψ(x, y)−ψ(x).

Then ψ,hx ∈C 1(X ), with C 1-norms bounded by 2‖ψ‖C 1 , uniformly with respect to x.

We can write I as

I =
∫
ϕ(T n

ω x,T n
ω y)

[
ψ(x, y)−ψ(x, y)

]
dµ(x)dµ(y)︸ ︷︷ ︸

:=I1

+
∫
ϕ(T n

ω x,T n
ω y)ψ(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

:=I2

.

Define now gω,x(y) :=ϕ(T n
ω x, y). Then (note that

∫
hx(y)h(y)dm(y)= 0)

|I1| =
∣∣∣∣∫ (∫

gω,x(T n
ω y)hx(y)dm(y)

)
dµ(x)

∣∣∣∣= ∣∣∣∣∫ (∫
gω,x(y)P n

ω (hx(y)h(y))dm(y)
)

dµ(x)
∣∣∣∣

≤ ‖ϕ‖L∞ sup
x

∥∥P n
ω (hx(y)h(y))

∥∥
L1(m(y))

≤ C′‖ϕ‖L∞(‖ψ‖C 1 +m(h))ρ(n).

by the hypothesis.

Similarly, define kω,y(x) :=ϕ(x,T n
ω y) so then (again,

∫
ψ(x)h(x)dm(x)= 0)

|I2| =
∣∣∣∣∫ (∫

kω,y(T n
ω x)ψ(x)dµ(x)

)
dµ(y)

∣∣∣∣
=

∣∣∣∣∫ (∫
kω,y(x)P n

ω (ψ(x)h(x))dm(x)
)

dµ(y)
∣∣∣∣

≤ ‖ϕ‖L∞
∥∥P n

ω (ψ(x)h(x))
∥∥

L1(m(x))

≤ C′‖ϕ‖L∞(‖ψ‖C 1 +m(h))ρ(n).

These imply that |I| ≤ 2C′‖ϕ‖L∞(‖ψ‖C 1 +m(h))ρ(n). �

Corollary 4.5.4. Under the assumptions of Theorem 4.5.3, for ψ ∈ C 1(X × X ) with
(µ⊗µ)(ψ)= 0, 1p

n
∑n

k=1ψ◦ F̃k(ω, x, y) satisfies a CLT with respect to ν⊗µ⊗µ, that is

1p
n

n∑
k=1

ψ◦ F̃k(ω, x, y)→d N(0, σ̃2)

in distribution for some σ̃2 ≥ 0.
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Proof. Let Q be the adjoint of F̃(ω, x, y)= (σω,Tω1 x,Tω1 y) with respect to the invariant

measure ν⊗µ⊗µ on Σ× X2 so that∫
ϕ◦ F̃(ω, x, y)ψ(ω, x, y)dµ(x)dµ(y)dν(ω)=

∫
ϕ(ω, x, y)(Qψ)(ω, x, y)dµ(x)dµ(y)dν(ω).

for ϕ ∈ L∞(Σ× X × X ). Iterating we have∫
ϕ◦ F̃n(ω, x, y)ψ(ω, x, y)dµ(x)dµ(y)dν(ω)=

∫
ϕ(ω, x, y)(Qnψ)(ω, x, y)dµ(x)dµ(y)dν(ω).

Taking ϕ= sign (Qnψ), we see from Theorem 4.5.3 that ‖Qnψ‖L1 ≤ C′ρ(n).

The proof now follows, as in Proposition 4.4.5, from [Liv96, Theorem 1.1] (see Theo-

rem 4.3.9). �

Suppose two of the maps Tβ1 and Tβ2 have different invariant measures. It is possible to

find a C 1 ϕ such that
∫
ϕdµβ1 6=

∫
ϕdµβ2 . In fact,

∫
ϕdµβ1 6=

∫
ϕdµβ2 for a C 2 open and

dense set of ϕ.

Theorem 4.5.5. Let ϕ ∈ C1 with µ(ϕ)= 0 and suppose that
∫
ϕ dµβ1 6=

∫
ϕ dµβ2 . Then it

is not the case that

lim
n→∞

1p
n

n∑
j=1

ϕ(T j
ω .)→ N(0,σ2)

for almost every ω ∈Σ. Hence, the Birkhoff sums need to be centered along each realization.

Proof. We follow the counterexample method of [AA16, Section 4.3]. We show that in

the uncentered case 2σ2 6= σ̃2. To do this we use [AA16, Theorem 9] which holds in our

setting, namely σ̃2 = 2σ2 if and only if

lim
n→∞

∫
Σ

(
1p
n

n−1∑
k=1

∫
X
ϕPωk . . .Pωn(h)dm

)2

dν= 0(4.15)

(as in [AA16, Section 4.3] we change the time direction and replace (ω1,ω2, . . . ,ωn) by

(ωn,ω2, . . . ,ω1); this does not affect integrals with respect to ν over finitely many symbols).

Note that the sequence Pω1 Pω2 . . .Pωn h is Cauchy in L1, as α< 1
2 and

‖Pω1 Pω2 . . .Pωn(h)−Pω1 Pω2 . . .Pωn . . .Pωn+k (h)‖1 ≤ Cn− 1
α+1(logn)

1
α

by Proposition 4.3.3. Thus Pω1 Pω2 . . .Pωn h → hω in L1 for some hω ∈ C2. This limit

defines hω, in terms of ω̄ := (. . . ,ωn,ω2, . . . ,ω1), i.e. ω reversed in time. We define G(ω) :=
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∫
X ϕhωdm. Note also that ‖Pω1 Pω2 . . .Pωn h−hω‖1 ≤ Cn−1−δ for some δ> 0, uniformly for

ω ∈Σ. Hence∫
Σ

(
n−1∑
k=1

1p
n

∫
X
ϕPωk . . .Pωn hdm

)2

dν

=
∫
Σ

(
n−1∑
k=1

1p
n

(∫
X
ϕhτkω dm+O

(
n−1∑
k=1

1
(n−k)1+δ

)))2

dν

which gives, using (4.15), that

lim
n→∞

∫
Σ

(
1p
n

(
n−1∑
k=1

G(τkω)

))2

dν= 0.(4.16)

We put a metric on Σ by defining d(ω,ω
′
)= s(ω,ω

′
)−1− ε

2 where s(ω,ω
′
)= inf{n :ωn 6=ω′

n}.

With this metric Σ is a compact and complete metric space. Note that ‖hω−hω′‖L1 ≤
Cs(ω,ω

′
)−

ε
2 hence G(ω) is Hölder with respect to our metric.

As in the Abdulkader-Aimino counterexample, (4.16) implies that G = H −H ◦τ for a

Hölder function H on the Bernoulli shift (τ,Σ,ν): by [Liv96, Theorem 1.1] (see Theo-

rem 4.3.9) G is a measurable coboundary, and therefore a Hölder coboundary, by the

standard Livšic regularity theorem (see for instance [VO16, Section 12.2]). Now consider

the points β∗
1 := (β1,β1, · · · ) and β∗

2 := (β2,β2, · · · ) in Σ; they are fixed points for τ, and

correspond to choosing only the map Tβ1 , respectively only the map Tβ2 . This implies

G(β∗
1)=G(β∗

2)= 0 which in turn implies
∫
ϕdµβ1 =

∫
ϕdµβ2 , a contradiction. �
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5
STATISTICAL PROPERTIES OF KÄENMÄKI MEASURES

5.1 Introduction

In this chapter we prove some results concerning the statistical properties of Käenmäki

measures. This is part of an ongoing project at the time of submission of this thesis. These

measures provide the right generalization of Gibbs measures (see definition 2.5.1) for

self-affine systems when studying the dimension of the corresponding attractors. While

we introduce the theory in a general setting, we will work in a particular case of IFS

consisting of matrices which are diagonal or anti-diagonal. In this case, the Käenmäki

measures measures admit an explicit description in terms of Gibbs measures on an

associated graph directed system. We prove that such measures are not mixing (theorem

5.3.4), and that they satisfy a 0-1 law for the measure of shrinking targets associated to

cylinders (theorem 5.3.7).

5.2 General theory

Recall the definition of self-affine system from chapter 2: a set of contractions {Si : X →
X , i = 1, . . . ,m} on a closed set X ⊂Rn such that Si(x)= A ix+bi for linear transformations

A i. In this setting, there exists a set E called the attractor of the self-affine system, such

that

E =
m⋃

i=1
Si(E).
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A historical problem is the investigation of the fractal properties of the set E for different

classes of self-affine systems. When the IFS consists of similarities, then the problem

becomes much easier: if the maps Si are such that

|Si(x)−Si(y)| = r i|x− y|
for all x, y ∈ X . It is possible to compute the dimension of the attractor of an IFS consisting

of similarities if the attractor F can be written as

F =
m⋃

i=1
Si(F),

where the union is disjoint enough. We make this notion more precise:

Definition 5.2.1. We say that the IFS {S1, . . . ,Sm} satisfies the open set condition (OSC)
if there exists a non-empty open set V such that

V ⊂
m⋃

i=1
Si(V ),

where the union is disjoint.

Under this condition it is possible to compute the Hausdorff dimension of the attractor

(Theorem 3(i) in [Hut81]).

Theorem 5.2.2. Suppose that {S1, . . . ,Sm} is an IFS consisting of similarities satisfying
the OSC. Then the Hausdorff dimension of F is equal to s, where s is given by the only
solution of

m∑
i=1

rs
i = 1.

Example 5.2.3. For the Cantor set, the similarity ratios are r1 = r2 = 1
3 . The OSC holds

with V = (0,1). Thus the Hausdorff dimension of the Cantor set is s = dimH F = log2
log3 .

The techniques used to prove this have become standard in the conformal setting and

resemble some of the ideas used in chapter 3, in particular, the use of symbolic coding,

bounded distortion properties and Birkhoff and Shannon-McMillan-Breiman theorems.

These techniques rely heavily on the fact that for similarities (or even conformal maps),

we see the same rate of contraction in all directions. When we study self-affine sets, this

is not the case, as we may have directions where the contraction is much stronger than

others.

Given n×n non-singular matrix A we denote by 1>α1 ≥α2 ≥ . . .≥αn > 0 the singular

values of A, defined as the lengths of the semi-axes of the ellipsoid T(B) where B =
B0(1)= {x ∈Rn : ‖x‖ ≤ 1}.
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Definition 5.2.4. Let 0≤ s ≤ n and A be a non-singular n×n matrix. The singular value

function is defined by

ϕs(A)=α1α2 · · ·αr−1α
s−r+1
r ,

where r is the integer satisfying r−1< s ≤ r.

One of the most important properties of ϕs is that it is submultiplicative:

Lemma 5.2.5. If A,B are non-singular n× n matrices, then we have that ϕs(AB) ≤
ϕs(A)ϕs(B).

Proof. This is lemma 2.1 from [Fal88]. �

Consider now an IFS {S1, . . . ,Sm} consisting of affine transformations Si(x) = A ix+ bi,

where the A i are n×n non-singular matrices. If we define the sums

Σs
k =

∑
(i1,...,ik)∈Ik

ϕs(A i1 . . . A ik ),

submultiplicativity of the singular value function implies that the sequence 1
n logΣs

k is

subadditive, and consequently, there exists a number Σs∞ such that (Σs
k)1/k →Σs∞ for each

s.

Proposition 5.2.6. The following numbers exist and are equal:

1. the unique s such that Σs∞ = 1;

2.

inf

{
s :

∞∑
k=1

∑
Ik

ϕs(A i1 . . . A ik )<∞
}
= sup

{
s :

∞∑
k=1

∑
Ik

ϕs(A i1 . . . A ik )=∞
}

.

Proof. This is proposition 4.1 from [Fal88]. �

Definition 5.2.7. The number s from proposition 5.2.6 is called the affinity dimension of
the IFS, and is denoted by d(A1, . . . , Am).

One of the foundational results in the theory of dimension of self-affine sets is the

following theorem:

Theorem 5.2.8 (Falconer). For all (b1, . . . ,bm) ∈Rmn we have that dimH F ≤ d(A1, . . . , Am).
If the contraction ratios r1, . . . , rm of the matrices A1, . . . , Am are such r i ≤ 1

3 for all i, then
we have that dimH F =min{n,d(A1, . . . , Am)} for almost every (b1, . . . ,bm) ∈Rmn.

103



CHAPTER 5. STATISTICAL PROPERTIES OF KÄENMÄKI MEASURES

Proof. This is the main theorem of [Fal88]. �

Similarly to the case of one dimensional maps, we can define a topological pressure for

higher dimensional systems.

Definition 5.2.9. For s ∈R, define the Pressure of the IFS by

P(s)= lim
n→∞

1
n

log

(∑
In

ϕs(A i1 · · ·A in)

)
.

Let {Si(x) = A ix+ bi, i = 1, . . . ,m} be a self-affine system, and consider the symbolic

space ΣN = {1, . . . ,m}N equipped with the product topology (or equivalently the topology

generated by the cylinder sets), and the dynamics of the left shift σ : Σ→Σ. Let Mσ be

the set of all σ-invriant Borel probability measures on Σ.

Definition 5.2.10. A measure ν ∈Mσ is called a ϕs-equilibrium of the self-affine system
{Si} if

sup
µ∈Mσ

[
hµ+ lim

n→∞
1
n

∫
Σ

logϕs(A in · · ·A i1)dµ
]

is achieved at ν. Here hµ represents the entropy of the measure µ (see definition 2.4.11).
When s is equal to the affinity dimension of the system, we call the corresponding measure
a Käenmäki measure.

Under certain irreducibility conditions on the set of matrices defining the IFS, the

corresponding ϕs-equilibrium measures have a Gibbs-like property.

Definition 5.2.11. We say that the family of matrices {A1, . . . , Am} is irreducible if there
are no proper subspaces V ⊂Rn such that A iV ⊂V for all i.

Theorem 5.2.12 ([FL02], [FK10]). For a self-affine system {Si(x)= A ix+bi, i = 1, . . . ,m}

with 2×2 irreducible matrices {A i}. Then {Si} has a unique ϕs-equilibrium ms, which is
ergodic and satisfies the following Gibbs property:

C−1e−P(s)kϕs(i)6ms([i])6Ce−P(s)kϕs(i),

where P(s) is the pressure of the IFS.

We will assume that each map Si maps the unit square into itself. Under our assumptions,

there exists a unique non-empty compact set F ⊂ [0,1]2 such that

F = ⋃
i∈I

Si(F)
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which we call the self-affine set associated to the system {Si}I . We can describe the

structure of the system by using a symbolic coding. Let Σ=IN and σ : Σ→Σ the left shift

operator, that is, for i= (i1, i2, . . .) ∈Σ, σ(i)= (i2, i3, . . .). The topology of Σ is generated by

the cylinder sets [i]= {x ∈Σ : x1 = i1, . . . , xk = ik} for i ∈I k. For any integer k and sequence

i= (i1, i2, . . .), we denote i|k = (i1, . . . , ik). For i ∈I ∗ =⋃
k I k, we write

Si = Si1 ◦ · · · ◦Sik .

With this, we can write a projection map from the symbolic space to the self-affine set by

Π(i)=
∞⋂

k=1
Sik

(
[0,1]2)

and then F =Π(Σ). We use the same coding for matrices of our system: give a word i ∈Σ,

denote A(in)= A i1 · · · · · A in , or A(i) when i ∈I ∗. In this case, we denote the length of i by

|i|.

5.3 Diagonal-antidiagonal systems

In this section we will consider self-affine systems of the form Si(x)= A ix+ ti indexed

by a finite alphabet I = {1, . . . ,d}. Here, the linear parts of the maps are contracting

non-singular 2×2 matrices with non-negative entries of the form

A i =
[

ai 0

0 bi

]
for i < l and

A i =
[

0 ai

bi 0

]
for i ≥ l.
In this section we describe the construction as well as the structure of Kaenmaki mea-

sures. For a linear transformation T : R2 → R2, recall that its singular values can be

defined as the length of the semiaxes of the ellipsoid T(B(0,1)). If we write them in

descending order, denote them by

1>α1(i)>α2(i)> 0.

For s ∈ (0,2], let ϕs : I ∗ →R+ be the Falconer potential:

ϕs(i)=
{

α1(i)s if s ∈ (0,1)

α1(i)α2(i)s−1 if s ∈ [1,2]
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It is easy to see that ϕs is subadditive: ϕs(ij) ≤ ϕs(i)ϕs(j). With this we can define the

subadditive pressure by

P(s)= lim
n→∞

1
n

log

( ∑
i∈I n

ϕs(i)

)
.

Assuming that P(2) ≤ 0, the affinity dimension is defined as the value s∗ such that

P(s∗)= 0. From 5.2.12 it follows that for each s, there is a unique ergodic Borel probability

measure ms and a constant C ≥ 1 such that

C−1e−P(s)kϕs(i)6ms([i])6Ce−P(s)kϕs(i)

for i ∈ I k. The measure ms can be projected to a measure µs on F by setting µs(A) =
ms(Π−1(A)) for every measurable set A.

The structure of the Kaenmaki measures for these particular systems was described in

[FJJ18]: the authors construct a graph directed system (GDS) on the alphabet {1, . . . ,2d}

and with matrix

A(i, j)=


1 if i ∈ {1, . . . , l−1}∪ {d+ l, . . . ,2d} and j6 d
1 if i ∈ {l, . . . ,d+ l−1} and j > d
0 otherwise.

We denote the symbolic space of this GDS by ΣA. With this GDS, it is possible to keep

track of the orientation of the linear part of Si for each i ∈I ∗. We send each sequence

i ∈Σ to an element in ΣA given by τ(i)= τ (i1i2 . . .)= (τ1(i)τ2(i) . . .) where τ1(i)= i1 and

τm(i)=
{

im if card
{
16 j6m−1 : i j > l

}
is even

im +d if card
{
16 j6m−1 : i j > l

}
is odd

If the linear part of Si|k is diagonal, then τk(i)= ik, otherwise τk(i)= ik +d. In this way,

if the linear part of Si|k is diagonal, the last digit of τ(i)|k is less or equal to d, while if it

is anti-diagonal, it is greater than d. It is easy to see that τ is injective but not surjective.

The image of τ is the set of sequences with first digit at most d. The complementary

function to τ, defined by ω(i)=ω (i1i2 · · · )= (ω1(i)ω2(i) . . .), ω1(i)= i1 +d and

ωm(i)=
{

im +d if card
{
16 j6m−1 : i j > l

}
is even

im if card
{
16 j6m−1 : i j > l

}
is odd

Similarly to τ, ω is injective but not surjective; in fact, its image consists of all the

sequences in ΣA starting with digits greater than d. It follows that ΣA = τ(Σ)∪ω(Σ).
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As observed in [FJJ18], the system (ΣA,σ) is mixing. In particular, this implies the

existence of Gibbs measures for regular enough potentials (see [Bow08]). Define the

locally constant potentials f1,s, f2,s :ΣA →R by

f1,s(i) =
{

s logai1 if i1 ≤ d
s logbi1−d if i1 ≥ d+1

and

f2,s(i) =
{

s logbi1 if i1 ≤ d
s logai1−d if i1 ≥ d+1

for s ∈ (0,1), and

f1,s(i) =
{

logai1 + (s−1)logbi1 if i1 ≤ d
logbi1−d + (s−1)logai1−d if i1 ≥ d+1

and

f2,s(i) =
{

logbi1 + (s−1)logai1 if i1 ≤ d
logai1−d + (s−1)logbi1−d if i1 ≥ d+1

for s ∈ [1,2]. The Gibbs measures associated to these potentials are denoted m1 and m2

respectively. Since τ is injective, we can define a measure on Σ by ν(E) = m1(τ(E))+
m2(τ(E))= m1(τ(E))+m1(ω(E)) for every measurable set E. We summarize the properties

of ν obtained in [FJJ18]:

Theorem 5.3.1. The measure ν is the unique Kaenmaki measure for ϕs, that is, ν= ms.
The topological pressure of the potentials f1,s and f2,s coincides with the subadditive
pressure P(s).

With this description of the Kaenmaki measure in mind, we examine some statistical

properties of it. We first prove that ms is not mixing. Using a different description, it

was proven in [Mor17] that a similar class of systems is not mixing with respect to the

equilibrium measure. To prove it in our context, we will need the following lemma:

Lemma 5.3.2. For any finite length word i ∈I , the image of the cylinder [i] under τ or ω
is a cylinder in ΣA.

Proof. Fix such word i and consider the cylinder [i] = {x ∈ Σ : x1 = i1, . . . , xk = ik}. The

image of [i] under τ is contained in the cylinder [i1,τ2(i), . . . ,τk(i)]. On the other hand, if
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z ∈ [i1,τ2(i), . . . ,τk(i)], then z1 = i1, z2 = τ2(i), . . . , zk = τk(i). Define j ∈Σ by j1 = z1, . . . , jk =
zk and

jn =
zn, if zn ≤ d

zn −d, if zn > d.

Then τ(j)= z and so τ[i]= [i1,τ2(i), . . . ,τk(i)]. �

From this it follows that

Lemma 5.3.3. For any finite length word i ∈I ,

σ−n[i]=σ−n
A (τ[i]),

where σA denotes the shift operator on ΣA.

Theorem 5.3.4. The measure ms is not mixing.

Proof. Fix two cylinders [a]= [a1, . . . ,ak], [b]= [b1, . . . ,b`]⊂Σ and let ε> 0 small enough

so that

m1[τ(a)]m2[τ(b)]+m2[τ(a)]m1[τ(b)]−2ε> 0.

Since m1,m2 are Gibbs measures, they are mixing (see [Bow08]), and hence, there is

n0 ∈N such that

∣∣mi
(
[τ(a)]∩σ−n

A [τ(b)]
)−mi[τ(a)]mi[τ(b)]

∣∣< ε
for i ∈ {1,2} and n ≥ n0. Since τ is injective

ν
(
[a]∩σ−n[b]

)= m1
(
τ([a]∩σ−n[b])

)+m2
(
τ([a]∩σ−n[b])

)
= m1

(
τ[a]∩τσ−n[b]

)+m2
(
τ[a]∩τσ−n[b]

)
= m1

(
[τ(a)]∩σ−n

A [τ(b)]
)+m2

(
[τ(a)]∩σ−n

A [τ(b)]
)
.

On the other hand,

ν[a]ν[b]= (m1[τ(a)]+m2[τ(a)) (m1[τ(b)]+m2[τ(b)])

= m1[τ(a)]m1[τ(b)]+m2[τ(a)]m2[τ(b)]+m1[τ(a)]m2[τ(b)]+m2[τ(a)]m1[τ(b)].
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We obtain then

ν([a]∩σ−n[b])−ν[a]ν[b]= (
m1([τ(a)]∩σ−n

A [τ(b)])−m1[τ(a)]m1[τ(b)]
)

+ (
m2([τ(a)]∩σ−n

A [τ(b)])−m2[τ(a)]m2[τ(b)]
)

− (m1[τ(a)]m2[τ(b)]+m2[τ(a)]m1[τ(b)]) .

Thus, ∣∣ν([a]∩σ−n[b])−ν[a]ν[b]
∣∣> (m1[τ(a)]m2[τ(b)]+m2[τ(a)]m1[τ(b)])−2ε> 0

and consequently m = ms cannot be mixing. �

We consider now the problem of shrinking targets for self-affine systems. We focus on

targets given by shrinking cylinders. Fix an infinite word j ∈ Σ and a non-decreasing

sequence `k, and define the targets by Bk = [j|`k ]. The recurrent set associated to this

family of targets is defined as

R(j)= {x ∈Σ :σk(x) ∈Bk for infinitely many k ∈N}

= {x ∈Σ :σk(x)|`k = j`k for infinitely many k ∈N}

= limsup
k→∞

R(j,k),

where R(j,k) = {x ∈ Σ : σk(x)|`k = j`k }. The recurrent set can be projected onto the self-

affine set:

R̃(Π(j))=Π(R(j)).

In [KR18], the authors study the dimension of recurrent sets for shrinking targets asso-

ciated to a self-affine system. In their setting, the maps satisfy a domination condition:

there exists a constant D such that

ϕs(ij)≥ Dϕs(i)ϕ(j).

This condition implies that the Käenmäki measure behaves essentially like a Gibbs

measure, and hence the same techniques can be used. In particular, the authors follow

the ideas of [CK01] to prove the following 0−1 law:

Theorem 5.3.5. Let j ∈ Σ and `k an increasing sequence. If m = mt and µ= µt are the
Käenmäki measures (on Σ and F respec) corresponding to the value of t such that P(t)= 0.
Then the measure of the set R̃(Π(j)) is either 0 or 1 according to wether the sum

∞∑
k=1

µ([j|`k ])

converges or not.
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We show that this result also holds in our setting. For this, we recall the analogue result

proved for Gibbs measures by Chernov and Kleinbock. We formulate their result in our

context:

Theorem 5.3.6. Let (Σ′,σ) be a topologically transitive topological Markov shift and η is
a Gibbs measure on Σ′. Assume {Ck} is a sequence of nested cylinders in Σ′ and

∞∑
k=1

µ(Ck)=∞.

Then {Ck} is a strong Borel-Cantelli sequence: if χn is the indicator function of σ−nCn,
then ∑N

n=1χn(x)∑N
n=1µ (An)

→ 1

µ-almost everywhere. Moreover, if we denote SN =∑N
n=1χn(x) and EN =∑N

n=1µ (An),

SN = EN +O
(
E1/2

N log3/2+εEN

)
.

In particular, the result above shows that the recurrent set for the shrinking targets

defined by the nested cylinders has full measure if the sum converges.

Theorem 5.3.7. Under the assumptions above on the self-affine system, then ν(R̃(Π(j)))
and m(Π(j)) are either 0 or 1, according to the convergence or diverngence of the series

∞∑
k=1

m([j|`k ]).

Proof. Assume that the sum
∑∞

k=1 m([j|`k ]) converges. Since m is shift invariant, we

have that

m(R(j,k))= m
[
j|`k

]
.

Then the Borel-Cantelli lemma implies that both R(j) and R̃(j) have full measure.

Suppose now that the sum
∑∞

k=1 m
([

j|`k

])
diverges. By theorem 5.3.1 we can write the

sum as

∞∑
k=1

m
([

j|`k

])= ∞∑
k=1

m1
(
τ
[
j`k

])+ ∞∑
k=1

m2
(
τ
[
j`k

])
,
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which implies that one of the two sums on the right hand side diverges. Without loss of

generality, assume the sum with respect to the measure m1 diverges, that is,

∞∑
k=1

m1
(
τ
[
j`k

])=∞.

Since m1 is shift invariant, we have that

m1
(
σ−n

A
[
τ(j)|`k

])= m1
[
τ(j)|`k

]
for all k.

The above remark implies that the nested sequence of cylinders {[τ(j`k )]}k and the Gibbs

measure m1 on ΣA satisfy the conditions of theorem 5.3.6, and hence,

m1

(
limsup

k→∞
σ−k

A
[
τj|`k

])= 1.

Since τ is injective,

limsup
k→∞

σ−k
A

[
τj|`k

]= τ(
limsup

k→∞
σ−k [

j|`k

])
.

We obtain then

m
(
limsup

k→∞
σ−k [

j|`k

])= m1

(
τ

(
limsup

k→∞
σ−k [

j|`k

]))+m2

(
τ

(
limsup

k→∞
σ−k [

j|`k

]))
≥ m1

(
limsup

k→∞
σ−k

A
[
τj|`k

])= 1

from which we conclude the result. �
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