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1 Bowen’s formula
Recall that in the first session, we introduced the topological pressure for dynamic
on compact spaces. More precisely,

Definition. Let f : M → M a continuous function in a compact metric space M
and φ : M → R a continuous function. The topological pressure of φ with respect to
f is

P (f, φ) = lim
ε→0

lim sup
n

1

n
log sup

{∑
x∈E

exp

(
n−1∑
k=0

(φ ◦ fk)(x)

)
: E is an (n, ε)-generating set for M

}
The topological pressure satisfies the variational principle, which relates it with

the measure theoretic entropy. In fact,

Theorem 1.1 (Variational Principle). Let f : M →M be a continuous transforma-
tion on a compact metric space. Then, for every continuous function φ : M → R,
we have that

P (f, φ) = sup
{
hµ(f) +

∫
M

φ dµ
}
,

where the supremum is taken over all f− invariant probability measures µ on M .

A measure attaining the supremum is called an equilibrium measure.
Now we present some easy properties of the topological pressure that allows us

to calculate it in some cases:

Theorem 1.2. Regard P (f, ·) as a function defined on C0(M,R) with the supremum
norm, then

1. P (f, ·) is Lipschitz continuous, with Lipschitz constant equal to 1;

2. P (f, φ+ c) = P (f, φ) + c for every c ∈ R;

3. if φ ≤ ψ then P (f, φ) ≤ P (f, ψ);

4. P (f, ·) is convex, that is, P (f, tφ+ (1− t)ψ) ≤ tP (f, φ) + (1− t)P (f, ψ);

5. P (f, ·) is constant in every cohomology class, that is, P (f, φ) = P (f, φ + u ◦
f − u) for every u ∈ C0(X,R);
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We use this to calculate the topological pressure of a particular system: do
the cantor set example as the repeller of the iterated function system. Take φt =
−t log |T ′|, calculate it, calculate P (f, φ0) and calculate d such that P (f, φd) = 0.
Plot the function P (f, φt)

This phenomena is a particular case of a more general, which we will explain
later. Before going in depth with this, we state a characterization of the pressure
for nice systems.

For full shifts and other systems, topological pressure can be characterized as
the weighted (by φ) exponential growth of periodic points of the dynamic f . In fact,

Definition. A function f : M → M is said to be topologically exact if for every
open set U ⊂M , there exists N ∈ N such that fN(U) = M .

Theorem 1.3. Let f : M → M a topologically exact expansive transformation and
φ : M → R a Hölder potential. Then,

P (f, φ) = lim
n→∞

1

n
log

∑
x∈Fix(fn)

exp

(
n−1∑
k=0

(φ ◦ fk)(x)

)
.

Now we state one of the most important results connecting thermodynamic for-
malism and dimension theory.

Theorem 1.4 (Bowen’s equation). Let D,D1, ..., DN ⊂ Rd compact convex sets
such that Di ⊂ D and Di ∩Dj for i 6= j. Set D∗ = D1 ∪ ... ∪DN and suppose that

vol(D \D∗) > 0.

Suppose there exists a C1 function f : D∗ → D such that the restriction to every Di

is an homeomorphism. Set

Λ =
∞⋂
k=0

f−k(D∗).

We make the following hypothesis for f :

1. f is expansive in D∗,

2. log |Df | is Hölder in D∗,

3. f is conformal, this is, ‖Df(x)‖‖Df(x)−1‖ = 1 for every x ∈ D∗

The, the Hausdorff Dimension of Λ is sd, where s is the unique solution of the
equation

P (s) := P (−s log | detDf |) = 0.

Sketch of proof. We present a sketch of proof for the case d = 1 and N = 2. We
need a series of lemmas to prove this.

Lemma 1.5. There exists a unique solution s to the equation P (−t log |f ′|) = 0.
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Proof. In fact, it is possible to see that the system is conjugated to a full shift on
2 symbols, so it has topological entropy equal to log 2 > 0, and this is precisely
the value of the left hand side of the equation at t = 0. On the other side, by the
Variational Principle,

P (−t log |f ′|) = sup{hµ(f) +

∫
(−t log |f ′|)dµ}

≤ log 2− t sup{log |f ′(x)| : x ∈ Λ},

so letting t → ∞, we get that P (−t log |f ′|) → −∞. By the Intermediate Value
Theorem, we conclude that there exists a root of the equation P (−t log |f ′|) = 0.
The uniqueness follows from the fact that P is monotonous, so P (−t log |f ′|) is
decreasing in t. We call this unique root by t0.

Recall the mass distribution principle:

Lemma 1.6 (Mass distribution Principle). Let µ be a probability measure on a
compact metric space M and suppose there exist numbers d,K, r > 0 such that

µ(B) ≤ K(diamB)d (1)

for every measurable set B ⊂ M with diamB < r. Then if µ(A) > 0 we have
m(A, d) > 0 and hence dimH A ≥ d.

Our system (Λ, f) can be coded by a full shift (Σ = {1, 2}N, σ) where the coding
π : Σ→ Λ is given by

π(ω) =
∞⋂
k=0

f−kDωk

and in a diagram,
Σ Σ

Λ Λ

σ

π π

f

? it seems that this is irrelevant ?
A distortion property, implied by the regularity assumptions on f is the following:

Lemma 1.7 (Bounded distortion). There exists constants B1, B2 > 0 such that

B1 ≤
diamDi1,...,in

|(fn)′(x)|−1
≤ B2

for every x ∈ Di1,...,in, n ∈ N and (i1, ...) ∈ Σ.

We introduce now the notion of Gibbs measure:

Definition. Suppose µ is a σ-invariant probability measure in Σ+
A and φ : Σ+

A → R+

a continuous function. Then µ is called a Gibbs Measure if there exist constants
C1, C2 > 0 such that

C1 ≤
µ(Ci1,...,in)

exp(−nP (φ) +
∑n−1

k=0 φ(σkω))
≤ C2

for every n ∈ N and ω ∈ Ci1,...,in.
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Applying this to φ = −s log |f ′ ◦ π−1|, we obtain that µ(Ci1,...,in) � |(fn)(x)|−s
for x ∈ Ci1,...,in
Lemma 1.8. There exists a Gibbs measure associated to φ(x) = −s log |f ′(π−1(x))|
where s is the solution to the pressure equation. This measure is the unique equilib-
rium measure for phi.

Proof. Construct measures supported in the periodic points of f : Λ→ Λ by

µn =
1

sn

∑
fnx=x

exp(
n−1∑
k=0

φ ◦ fk(x))δx

where sn are normalization constants in order to obtain µ(Λ) = 1 and δx the Dirac
measure supported in {x}. Since the space of probability measures is compact, there
exists an accumulation point µ of the sequence {µn}. This measures satisfied the
Gibbs property.

Now we proceed to prove the Bowen’s formula. Let s be the unique solution to
the pressure equation, and µ the Gibbs measure associated to −s log |f ′(π−1(x))|.

2 Julia sets
Definition. Let U ⊆ C a domain and f : U → U a holomorphic map. We define
its Julia set J as the closure of the repelling periodic points of f , i.e.,

J =
⋃
n≥1

{z ∈ C : fnz = z and |(fn)′(z)| > 1}.

The Julia set of f is a closed invariant set.

Lemma 2.1 (Ruelle, Bowen). If f : J → J is expanding, there exists a Markov
partition for the system.

An important case of Julia set is the family generated by the quadratic polyno-
mials. For fc(z) = z2 + c, call Jc the corresponding Julia set. A characterization of
hyperbolicity of the maps fc is given in terms of the Mandelbrot set

Definition. We define the Mandelbrot set as

M = {c ∈ C : |fnc (0)| 6→ ∞ asn→∞}.

Proposition 2.2. Let fc be a quadratic map with corresponding Julia Jc. Then
f : J → J is hyperbolic if and only if either c lies outside M, or fc has an
attracting periodic point z, ie, fnc z = z for some n ∈ N and |(fnc )′(z)| < 1. If
c /∈M, then Jc is a Cantor set, while if c ∈M then Jc is connected.
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3 Transfer operator
We begin by introducing the notion of iterated system scheme.

Definition. Let U1, . . . Uk ⊂ Rd a finite collection of subsets such that Ui = int(Ui).
For k ≥ 2, let A be a k× k aperiodic matrix (i.e., AN > 0 for some N) with entries
in {0, 1}, and assume that for every pair i, j ∈ {1, . . . k} of symbols such that Aij = 1
there is an analytic map φji : Ui → Uj such that

1. φji(Ui) ⊂ Uj,

2. φji is a strict contraction, i.e., there exists a constant 0 < θ < 1 such that
|(Dφji)(z)| ≥ θ for every z ∈ Ui.
The collection {φji : Aij = 1} is called an Iterated function system.

For a string i = (i1, . . . , in+1) ∈ {1, . . . , k}n (for which we write |i| = n+ 1) such
that Aij ,ij+1

= 1 for every j ∈ {1, . . . , n}, we can associate a map φi = φin+1in ◦ . . . ◦
φi2i1 : Uin+1 → Ui1 . The Limit set associated to an IFS is the set

Λ =
∞⋂
n=1

⋃
|i|=n+1

φi(Ui1).

For i = (i1, . . . , in+1) if i1 = i1+n (in which case we write i ∈ Fixn), then the
contraction φi : Ui1 → Ui1 has a unique fixed point which we call zi. In this setting,
the pressure function of the Bowen’s equation takes the form

P (s) = lim
n

1

n
log

∑
i∈Fixn

|Dφi(zi)|s.

An important case arise when considering Markov maps: poner como se consigue
un IFS a partir de un markov map. poner como ejemplo el doubling map (mayer)

We have already seen that the Hausdorff dimension of the repeller associated to
iterated function systems coming from Markov maps is given by the Bowen formula.
This result also holds for general iterated function systems.

Now we introduce some operator theoretic notions etc
For every symbol i ∈ {1, . . . , k} choose a polydisk Di = D

(1)
i × . . .×D

(d)
i ⊂ Cd ≥

such that Ui × {0} ⊂ Di. We may assume that for each admissible pair (i, j),
the maps φji and |Dφ(ji)(·)| can be extended to maps Di → Dj (we use the same
notation for such extensions) such that

1. φji(Di) ⊂ Dj,

2. supz∈Di
|Dφji(z)| < 1.

Call D =
∐k

i=1Di. For every i ∈ Fixn, that is ij = ij+n for every j, the contraction
φi : Di1 → Di1 has a unique fixed point, let say zi and it lies in the real section Rd.

Now we are ready to define the transfer operator. For any open set U , let A∞(U)
the Banach space of holomorphic functions on U which are bounded in U , equipped
with the supremum norm. For any s ∈ C and (i, j) such that Aij = 1, define the
weight function ws,ji ∈ A∞(Di) by

ws,ji(z) = |Dφji(z)|s.
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Then define the bounded linear operator Ls,ji : A∞(Dj)→ A∞(Di) by

Ls,jig(z) = g(φjiz)ws,ji(z).

Summing over all the symbols j compatible with i, we have the component transfer
operator,

Ls,ih(z) =
∑

j:Aij=1

Ls,jih(φji(z)) =
∑

j:Aij=1

h(φjiz)ws,ji(z).

The operator extends naturally to an operator A∞(
∐

j:Aij=1Dj) → A∞(Di) and
more over, it extends to an operator A∞(D) → A∞(Di). Finally, we fine the
transfer operator Ls : A∞(D)→ A∞(D) by

Lsh|Di
= Ls,ih

for each h ∈ A∞(D) and i ∈ {1, . . . , k}.
example: doubling map, gauss map
The following result is one of the key aspects connecting the transfer operator

to thermodynamic formalism

Theorem 3.1 (Ruelle). For real s, the transfer operator Ls;A∞(D)→ A∞(D) has
spectral radius exp(P (s)), being this the unique eigenvalue of maximum modulus,
and it is simple and isolated.

This result, together with perturbative methods of operators, allows us to obtain
information about the regularity of the function coding the Hausdorff dimension of
certain limit sets.

examples?
More information of the spectrum of L is known when acting on the space

A∞(D). We introduce the notion of nuclear operators, due to Grothendieck

Definition. A linear operator L : B → B on a Banach space is said to be nuclear
of order p if there exist {un} ⊂ B, {ln} ⊂ B∗ (with ‖un‖ = ‖ln‖ = 1 and {ρn} ⊂ C
with

∑
n |ρn|p <∞ such that

L(v) =
∞∑
n=0

ρnln(v)un

for all v ∈ B. If L is nuclear of order p for every p > 0, then we say that L is
nuclear of order zero.

Note that nuclear operators are compact. One of the the properties of nuclear
operators is that their trace

Tr(L) =
∑

λ eigenvalues

λ

is well defined.
example: restriction operator
The following result allows us to fully exploit the properties of the spectrum of

the transfer operator:
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Theorem 3.2 (Ruelle). The transfer operator L : A∞(D) → A∞(D) is nuclear of
order zero.

The trace of the transfer operator and its iterates can be explicitly computed;

Proposition 3.3. If Ls : A∞(D)→ A∞(D) is the transfer operator associated to a
conformal IFS scheme then

Tr(Lns ) =
∑
i∈Fixn

|Dφi(zi)|s

det(I −Dφi(zi))
.

With the above proposition we can write the Fredholm determinant of the trans-
fer operator as

det(I − zLs) : = exp

(
−
∞∑
n=1

zn

n
TrLns

)

= exp

− ∞∑
n=1

zn

n

∑
i∈Fixn

|Dφi(zi)|s

det(I −Dφi(zi))


Once more, we go back to the works of Grothendieck

Proposition 3.4 (Grothendieck). The Fredholm determinant det(I − zLs) is an
entire function of both s and z. If λr(s), r = 1, 2, . . . is an enumeration of the
eigenvalues of Ls, counted with multiplicity, then

det(I − zLs) =
∞∏
r=1

(1− zλr(s)).

As a consequence of all the above, we obtain

Theorem 3.5. The Hausdorff dimension of the limit set Λ associated to an IFS is
the largest zero of the function z 7→ det(I − zLs).

Since the Fredholm determinant is an entire function, it admits a power series
expansion

det(I − zLs) = 1 +
∑
N=1

dN(s)zN

Comparing with the product formula for the Fredholm determinant, it is possible
to determine explicitly the coefficients of such expansion.

Proposition 3.6. The coefficients dN(s) are given by

dN(s) =
∑

(n1,...,nm)
n1+...nm=N

(−1)m

m!

m∏
l=1

1

nl

∑
i∈Fixnl

|Dφi(zi)|s

det(I −Dφi(zi))
.

There exists 0 < δ < 1 such that dN(s) = O(δN
1+1/d

) as N →∞ for all s > 0.

Once the fixed points of the mappings φ are known, the above expression al-
lows us to efficiently evaluate the coefficients of the power series expression for the
Fredholm determinant.
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